Category Archives: Disease – Fruit Crop

Plant Problems to Watch for in 2023

Lipstick Rust Lipstick Rust
Host:   Chinese juniper, apple, crabapple
Pathogen:   Gymnosporangium yamadae
Signs/Symptoms:   Brown blobs with orange gelatinous masses (juniper), red leaf spots (apple, crabapple)
Boxwood Blight Boxwood Blight
Host:   Boxwood
Pathogens:   Calonectria pseudonaviculata
Signs/Symptoms:   Circular, brown leaf spots followed by leaf drop and shrub death
For more information see:   UW Plant Disease Facts D0023
Late Blight Late Blight
Host:   Tomato, potato
Pathogen:   Phytophthora infestans
Signs/Symptoms:   Water-soaked spots on leaves, leathery areas on tomato fruits, rapid plant death
For more information see:   UW Plant Disease Facts D0068
Septoria Leaf Spot and Early Blight Septoria Leaf Spot and Early Blight
Host:   Tomato
Pathogens:   Septoria lycopersici and Alternaria solani
Signs/Symptoms:   Spotting and eventual total collapse of leaves, working from the bottom of the plant up
For more information see:   UW Plant Disease Facts D0100/46
Septoria Leaf Spot of Lilac Septoria Leaf Spot of Lilac
Host:   Lilac
Pathogen:   Septoria sp.
Signs/Symptoms:   Dead spots on leaves, potentially leading to complete leaf browning
Verticillium Wilt for 2023 Plant Problems Verticillium Wilt
Hosts:   Woody and herbaceous ornamentals, vegetables
Pathogens:   Verticillium sp.
Signs/Symptoms:   Wilting, branch dieback, plant death
For more information see: UW Plant Disease Facts D0121/D0122
Powdery Mildew Powdery Mildew
Hosts:   Herbaceous and woody ornamentals, fruit, vegetables, turf
Pathogens:   miscellaneous powdery mildew fungi
Signs/Symptoms:   Powdery white growth on leaves
For more information see:   UW Plant Disease Facts D0084/86/87
Rhizosphaera Needle Cast Rhizosphaera Needle Cast
Hosts:   Colorado blue spruce, other spruces
Pathogen:   Rhizosphaera kalkhoffii
Signs/Symptoms:   Browning/purpling of interior needles of lower branches, followed by needle drop
For more information see:   UW Plant Disease Facts D0093
Diplodia Shoot Blight and Canker Diplodia Shoot Blight and Canker
Hosts:   Austrian pine, other pines
Pathogen:   Diplodia spp.
Signs/Symptoms:   Dieback of brand tips with dead needles showing uneven lengths
For more information see:   UW Plant Disease Facts D0042
Chlorosis Chlorosis
Hosts:    Pin oak, red maple, birch, azalea, white pine, blueberry
Pathogen:   None
Signs/Symptoms:   Yellow leaves with dark green veins
For more information see:   UW Plant Disease Facts D0030
Improper Planting Improper Planting
Hosts:   Woody trees and shrubs
Pathogen:   None
Signs/Symptoms:   No root flare at the soil line, girdling roots, frost cracks, canopy thinning, early fall color, branch dieback, tree/shrub decline and death

For more information on plant problems to watch for:
See https://pddc.wisc.edu/ or contact your county Extension agent.

Plant Problems to Watch for in 2022

Boxwood Blight Boxwood Blight
Host:   Boxwood
Pathogens:   Calonectria pseudonaviculata
Signs/Symptoms:   Circular, brown leaf spots followed by leaf drop and shrub death
For more information see:   UW Plant Disease Facts D0023
Lipstick Rust Lipstick Rust
Host:   Chinese juniper, apple, crabapple
Pathogen:   Gymnosporangium yamadae
Signs/Symptoms:   Brown blobs with orange gelatinous masses (juniper), red leaf spots (apple, crabapple)
Late Blight Late Blight
Host:   Tomato, potato
Pathogen:   Phytophthora infestans
Signs/Symptoms:   Water-soaked spots on leaves, leathery areas on tomato fruits, rapid plant death
For more information see:   UW Plant Disease Facts D0068
Septoria Leaf Spot and Early Blight Septoria Leaf Spot and Early Blight
Host:   Tomato
Pathogens:   Septoria lycopersici and Alternaria solani
Signs/Symptoms:   Spotting and eventual total collapse of leaves, working from the bottom of the plant up
For more information see:   UW Plant Disease Facts D0100/46
Septoria Leaf Spot of Lilac Septoria Leaf Spot of Lilac
Host:   Lilac
Pathogen:   Septoria sp.
Signs/Symptoms:   Dead spots on leaves, potentially leading to complete leaf browning
Wood Rots Wood Rots
Hosts:   Woody trees and shrubs
Pathogens:   Miscellaneous wood rot fungi
Signs/Symptoms:   Shelf-like growths on trunks and branches
Canker Diseases Canker Diseases
Hosts:    Woody trees and shrubs
Pathogens:   Miscellaneous canker fungi
Signs/Symptoms:   Sunken areas on trunks/branches
For more information see:   UW Plant Disease Facts D0027, D0037, D0042, D0055, D0074, D0114
Virus Diseases Virus Diseases
Hosts:   All plants, particularly herbaceous ornamentals
Pathogen:   Miscellaneous plant viruses
Signs/Symptoms:   Blotchy leaf color, growth distortions
For more information see:   UW Plant Disease Facts D0036, D0063, D0067, D0115, D0116, D0130
Rhizosphaera Needle Cast Rhizosphaera Needle Cast
Hosts:   Colorado blue spruce, other spruces
Pathogen:   Rhizosphaera kalkhoffii
Signs/Symptoms:   Browning/purpling of interior needles of lower branches, followed by needle drop
For more information see:   UW Plant Disease Facts D0093
Chlorosis Chlorosis
Hosts:    Pin oak, red maple, birch, azalea, white pine, blueberry
Pathogen:   None
Signs/Symptoms:   Yellow leaves with dark green veins
For more information see:   UW Plant Disease Facts D0084
Improper Planting Improper Planting
Hosts:   Woody trees and shrubs
Pathogen:   None
Signs/Symptoms:   No root flare at the soil line, girdling roots, frost cracks, canopy thinning, early fall color, branch dieback, tree/shrub decline and death

 

Ten Common Plant Diseases/Disorders You Can Diagnose by Eye

Powdery Mildew Powdery Mildew
Hosts:   Herbaceous and woody ornamentals, fruits, vegetables, turf
Pathogens:   Miscellaneous powdery mildew fungi
Signs/Symptoms:  Powdery white growth on leaves
For more information see:       UW Plant Disease Facts D0084/86/87
Tar Spot - Ten Common Plant Diseases Tar Spot
Hosts:  Maples
Pathogen:   Rhytisma spp.
Signs/Symptoms:  Tarry areas (either solid spots or clusters of small spots) on leaves
For more information see:       UW Plant Disease Facts D0110
Peach Leaf Curl Peach Leaf Curl
Hosts:  Peach
Pathogen:   Taphrina deformans
Signs/Symptoms:  Light-green, yellow or purplish-red puckered areas on leaves
For more information see:       UW Plant Disease Facts D0076
Sooty Mold Sooty Mold
Hosts:  Any plant
Pathogen:   Miscellaneous sooty mold fungi
Signs/Symptoms:  Powdery black growth on leaves or needles
For more information see:       UW Bulletin A2637
Chlorosis Chlorosis
Hosts:  Oak, red maple
Cause:   Iron or manganese deficiency, often induced by high soil pH
Signs/Symptoms:  Yellow leaves with dark green veins
For more information see:       UW Plant Disease Facts D0030
Gymnosporangium Rusts Gymnosporangium Rusts
Hosts:  Juniper, apple, crabapple, hawthorn, quince
Pathogen:   Gymnosporangium spp.
Signs/Symptoms:  Brown blobs with orange gelatinous masses (juniper); yellow/orange leaf spots (other hosts)
For more information see:       UW Plant Disease Facts D0058
Black Knot Black Knot
Hosts:  Prunus spp. (plum and cherry)
Pathogen:   Apiosporina morbosa
Signs/Symptoms:  Black poop-like growths on branches
For more information see:       UW Plant Disease Facts D0018
Elderberry Rust Elderberry Rust
Hosts:  Elderberry
Pathogen:   Puccinia sambuci
Signs/Symptoms:  Light yellow, powdery growths on branches
For more information see:       UW Plant Disease Facts D0049
Golden Canker Golden Canker
Hosts:  Pagoda dogwood
Pathogen:   Cryptodiaporthe corni
Signs/Symptoms:  Gold-colored branches with orange spots
For more information see:       UW Plant Disease Facts D0055
Dog Vomit Slime Mold Dog Vomit Slime Mold
Hosts:  Any plant and on mulch
Cause:   Fuligo septica
Signs/Symptoms:  Scrambled egg-like masses on mulch or at the base of plants
For more information see:       UW Plant Disease Facts D0102

For more information on common plant diseases:  See https://pddc.wisc.edu/ or contact your county Extension agent.

Peach Leaf Curl

What is peach leaf curl?  Peach leaf curl is a common disease of peach and nectarine trees throughout the Midwest and eastern U.S.  Where the disease is severe, tree vigor and fruit quality and yield are reduced.  Peach leaf curl often becomes more prevalent after relatively mild winters, which are more favorable for the survival of the organism that causes the disease.  A related disease, plum pockets, affects plums.

Leaf distortions and discoloration typical of peach leaf curl.
Leaf distortions and discoloration typical of peach leaf curl.

What does peach leaf curl look like?  Diseased leaves are distorted with puckered, thickened, twisted areas that can be light green, yellow, or reddish to purple in color.  Leaves later turn brown and fall from the tree.  Diseased shoots are stunted with small, yellowish leaves, or have leaves arranged in tight whorls (rosettes).  Diseased flowers may abort, leading to reduced fruit set, while diseased fruit are bumpy, reddish in color, and fall prematurely.

Where does peach leaf curl come from?  Peach leaf curl is caused by the fungus Taphrina deformans, which overwinters in bark and bud scales of peach and nectarine trees.  Fungal spores infect leaves and shoots in the spring while leaves are still in the bud and as they just begin to emerge.  Mild (50 to 70°F), wet weather during this period favors infection.  Additional spores form on the surface of diseased tissue, and these spores cause new infections if the weather remains mild and wet.

How do I save trees that have peach leaf curl?  Peach leaf curl is unlikely to kill a peach or nectarine tree on its own.  However, if significant premature leaf drop occurs, trees will be susceptible to drought stress and winter injury.  To help maintain tree vigor, apply water (approximately one inch per week) at the drip lines (i.e., the edges of where the branches extend) of peach and nectarine trees during dry periods.  Also, fertilize trees with nitrogen, but avoid fertilizing after August 1; late season fertilization will prevent trees from hardening off properly before winter, making them prone to winter injury.  Finally, thin fruit if the crop load is heavy.

How do I avoid problems with peach leaf curl in the future?  Because Taphrina deformans survives in bark and bud scales, removing diseased leaves in the fall will not reduce disease.  To prevent serious problems with peach leaf curl, plant resistant or tolerant peach varieties (e.g., ‘Frost’, ‘Indian Free’, ‘Q-1-8’, varieties derived from ‘Redhaven’).  Avoid growing susceptible varieties (e.g., those derived from ‘Redskin’).  In addition, consider applying a single fungicide spray in the fall after leaf drop or in the spring before buds begin to swell to control peach leaf curl (and also plum pockets).  Effective fungicide active ingredients include chlorothalonil, copper (e.g., Bordeaux mixture), and ferbam.  Choose a fungicide that is labeled for use on edible fruit crops, and read and follow all label instructions to ensure that you use the product in the safest and most effective manner possible.

For more information on peach leaf curl:  Contact your county Extension agent.

Elderberry Rust

What is elderberry rust?  Elderberry rust is a visually striking fungal disease that affects stems, leaves and flowers of plants in the genus Sambucus (i.e., elderberries).  The disease also affects sedges (Carex spp.).  On elderberries grown as ornamentals, as well as on sedges, the disease is primarily a cosmetic problem.  However, if elderberries are grown for fruit, the disease can disrupt flower and fruit formation, thus reducing fruit yield.

An elderberry rust gall on elderberry (left) and leaf spots caused by elderberry rust on sedge (right). Photos courtesy of Jenell Bindl (left) and Michele Warmund, University of Missouri (right)
An elderberry rust gall on elderberry (left) and leaf spots caused by elderberry rust on sedge (right). Photos courtesy of Jenell Bindl (left) and Michele Warmund, University of Missouri (right)

What does elderberry rust look like?  Elderberry rust is most noticeable on elderberries where it causes growth distortions and swellings (i.e., galls) on leaves and stems.  Galls are often very large, bright yellow and powdery from spores produced by the causal fungus.  In extreme cases, galls can resemble banana slugs that have attached themselves to branches.  Infected flowers become thick, swollen and green-tinged rather than white.  Affected plant parts are covered with a network of small (approximately 1/16 inch in diameter) ring-like spots.  These spots are reproductive structures of the rust fungus and produce the powdery spores that coat the galls.

On sedges, elderberry rust causes brownish leaf spots, often with yellow halos.  The spots eventually erupt releasing powdery, rusty-orange spores.

Where does elderberry rust come from?  Elderberry rust is caused by the fungus Puccinia sambuci, also known as Puccinia bolleyana.  The fungus overwinters in sedge debris, and spores produced in this debris blow to elderberry plants in the spring, leading to infection and gall formation.  Spores produced in elderberry galls blow back to sedges, where infection of newly produced leaves (and other plant parts) occurs.  These infections lead to spotting and to the formation of a third type of spore that reinfects sedges causing additional spotting.  Late in the season a fourth type of spore is produced that serves as the overwintering phase of the fungus.  Infection of both elderberries and sedges is favored by wet weather.

How do I save plants with elderberry rust?  Elderberry rust is not a lethal disease on either elderberry or sedge.  When galls form on elderberry, simply prune these out.  This will make elderberry plants more aesthetically pleasing and limit spread of the fungus to sedges.  When pruning, cut branches four to six inches below each gall.  Between cuts, decontaminate pruning tools by treating them for at least 30 seconds with 70% alcohol (e.g., rubbing alcohol straight out of the bottle), a spray disinfectant containing 60-70% active ingredient, or a 10% bleach solution (i.e., one part of a disinfecting bleach and nine parts water).  If you decide to use bleach, be sure to rinse your tools thoroughly after you are done pruning and then oil them to prevent rusting, which can be caused by bleach use.  Dispose of galls by burning (where allowed by local ordinance) or burying them.

How do I avoid problems with elderberry rust in the future?  In landscape settings, the best way to avoid problems with elderberry rust is to remove any sedges that are growing near elderberry plants.  The farther the distance between elderberries and sedges, the less likely that elderberry rust will be an issue.  Also, increase airflow around elderberry plants by thinning them and removing surrounding plants.  Increased airflow will dry plants more rapidly and make the environment less favorable for infection.  DO NOT use a sprinkler to water plants, as that wets leaves and provides a better environment for infections to occur.  Instead, use a soaker or drip hose to apply supplemental water to the soil at the drip lines of the plants (i.e., the edges of where the branches extend).  While fungicides are available for rust control in commercial elderberry production, these products are not recommended for use in home garden settings.

For more information on elderberry rust:  Contact your county Extension agent.

Tobacco Mosaic

Tobacco mosaic causing a blotchy light and dark coloring (mosaic) of tobacco leaves.
Tobacco mosaic causing a blotchy light and dark coloring (mosaic) of tobacco leaves.

What is tobacco mosaic?  Tobacco mosaic is a common viral disease of worldwide distribution that affects over 200 species of herbaceous and, to a lesser extent, woody plants.  Common hosts include tobacco, solanaceous vegetables (e.g., pepper, tomato) and vining vegetables (e.g., cucumber, melon, squash), as well as a wide range of ornamentals (e.g., begonia, coleus, geranium, impatiens, million bells, petunia).  The disease has its biggest impact on vegetables, where it can reduce yield and affect quality to the point that commercial crops cannot be marketed.

What does tobacco mosaic look like?  Symptoms of tobacco mosaic vary in type and severity depending on the plant infected, plant age, the variant of the virus involved, and environmental conditions.  On leaves, typical symptoms include blotchy light and dark areas (called mosaic); cupping, curling, elongation (strapping), roughening, wrinkling and other growth distortions; and smaller than normal size.  Fruits may have a blotchy color, ripen unevenly, be malformed or have an off flavor.  Entire infected plants are often stunted.  Other viral diseases like cucumber mosaic (see UW Plant Disease Facts D0036, Cucumber Mosaic) can cause symptoms similar to tobacco mosaic.  Often, multiple viral diseases can simultaneously affect a single plant.  Certain herbicide exposures (see UW Plant Disease Facts D0060, Herbicide Damage), nutrient deficiencies or toxicities, high temperature and even insect feeding can also cause similar symptoms.  Proper diagnosis of tobacco mosaic requires lab testing.

Where does tobacco mosaic come from?  Tobacco mosaic is caused by Tobacco mosaic virus (TMV), the first virus ever identified.  Numerous variants (strains) of the virus have subsequently been described.  TMV survives in infected plants (including viable seeds), as well as in debris from these plants.  Plant-based products (most notoriously tobacco products) can harbor the virus.  TMV is very stable and can survive for long periods of time; there are reports of TMV surviving and remaining infectious after 50 years in storage at 40°F.  Because of its stability, TMV can survive on and be picked up from hands, clothing, gardening tools, work surfaces and any other object (e.g., door knobs) that gardeners may handle.

TMV is highly transmissible and is commonly spread by handling infected plants, then healthy plants.  Spread via gardening tools is also very common.  No specific insects spread TMV (the way that aphids spread Cucumber mosaic virus).  However, bees and chewing insects (e.g., grasshoppers) can transmit TMV through casual contact or their feeding as they move from plant to plant.

Leaf growth distortions caused by tobacco mosaic.
Leaf growth distortions caused by tobacco mosaic.

How do I save a plant with tobacco mosaic?  There is no cure for tobacco mosaic.  Once infected, plants remain infected for life, and typically the virus spreads throughout the plant from the point of infection.  Infected plants and any associated debris should be burned (where allowed by local ordinance) or double-bagged and disposed of in a landfill.  DO NOT compost plants with this disease.  Thoroughly decontaminate any items that have come into contact with infected plants or their debris by treating them for a minimum of one minute with:

  • 2.75 tablespoons Alconox® (a lab detergent) plus 2.5 tablespoons sodium lauryl sulfate (SLS), also known as sodium dodecyl sulfate (SDS), in one gallon of water, or
  • 14 dry ounces of trisodium phosphate in one gallon of water.

These ingredients can be ordered on the internet.  If you decide to use SLS (SDS), be sure to wear gloves, safety goggles and a dust mask, and mix the solution in a well-ventilated area as SLS (SDS) is a known skin and eye irritant.  Once treated, rinse items with sufficient water to remove any residues.  Also, thoroughly wash your hands with soap and water, and launder any clothing that you wore while disposing of infected plants and debris.

How do I avoid problems with tobacco mosaic virus in the future?  Inspect plants prior to purchase for any symptoms of tobacco mosaic, and DO NOT buy symptomatic plants.  Purchase seed from a reputable supplier that routinely inspects their seed-producing plants for symptoms of viral (and other) diseases.  If you use tobacco products, DO NOT use them around plants.  Also, wash your hands thoroughly with soap and water prior to handling plants, and consider wearing freshly laundered clothing when gardening.  Finally, decontaminate (as described above) any items that might harbor TMV to help prevent spread.  Even if you do not use tobacco products, routine handwashing and decontamination of gardening tools and other items can help prevent tobacco mosaic from being a problem.

For more information on tobacco mosaic:  Contact your county Extension agent.

Silver Leaf

What is silver leaf?  Silver leaf is a fungal disease that affects a wide range of deciduous trees.  The disease has its biggest impact in fruit trees such as apple, pear and cherry, but can also affect ornamental trees such as willow, poplar, maple, oak, and elm.  Silver leaf has traditionally been considered a disease of older trees that have been physically damaged or are in decline due to other diseases.  However, beginning in 2017, severe cases of silver leaf have been observed on young, healthy apple trees in commercial orchards in Wisconsin.

Young, vigorous high-density apple trees, with trees showing symptoms of silver leaf (on the right) adjacent to those that do not (on the left).
Young, vigorous high-density apple trees, with trees showing symptoms of silver leaf (on the right) adjacent to those that do not (on the left).

What does silver leaf look like?  The first symptom of silver leaf is a silver sheen that appears on leaves of affected trees. The number of leaves affected can vary dramatically from tree to tree.  The silver sheen develops when the epidermis of a leaf (i.e., the surface layer of cells) separates from the rest of the leaf, altering the way that the leaf reflects light.  The silvery leaves may also have brown, dead patches.  Leaf symptoms may appear one year, but may be less severe or even nonexistent in subsequent years.

Note that other tree stresses (particularly environmental stresses) can cause leaf symptoms similar to those of silver leaf.  An additional symptom that can help in identifying silver leaf is dark staining just under the bark of branches with symptomatic leaves. This staining can extend several inches down a branch.  Eventually, white edged, purple-brown, shelf-like conks (reproductive structures of the fungus that causes the disease) will appear on branches and/or trunks of the diseased trees.

Where does silver leaf come from?  Silver leaf is caused by the fungus Chondrostereum purpureum.  Spores of the fungus are released from conks during wet periods in the autumn and spring and infect trees at pruning scars or other open wounds (e.g., wounds from branches breaking during severe storms or due to heavy, wet spring snow).  The fungus lives in the xylem (i.e., the water-conducting tissue) of infected branches, and its presence in the xylem leads to the dark staining as described above.  A toxin released by the fungus moves up into the leaves causing the epidermis separation that leads to the silver sheen of the leaves.  Eventually, wood in infected branches begins to decay, at which point the fungus starts producing conks.

How do I save a tree with silver leaf?  On trees with limited damage, prune out branches showing leaf symptoms.  Also watch for any conks, and immediately remove branches where these are present.  Removing conks limits production of spores that can lead to infections in other trees.  When pruning, cut branches at least four inches below where you can see staining under the bark or where conks are visible.  Decontaminate pruning tools after each cut by treating them for at least 30 seconds in 70% alcohol (e.g., rubbing alcohol, certain spray disinfectants), a commercial disinfectant or 10% bleach.  If you use bleach, be sure to thoroughly rinse and oil your tools after pruning to prevent rusting.

The silver sheen of leaves typical of silver leaf (left) and conks (i.e., reproductive structures) of the silver leaf fungus, Chondrostereum purpureum (right).
The silver sheen of leaves typical of silver leaf (left) and conks (i.e., reproductive structures) of the silver leaf fungus, Chondrostereum purpureum (right).

In plantings where silver leaf symptoms are widespread, pruning out all symptomatic branches may not be practical, and the loss of that many branches might cause more harm than good.  Also, trees sometimes show symptoms one year but then appear to recover in subsequent years.  Therefore, instead of pruning symptomatic branches, consider marking diseased trees.  Carefully watch the marked trees each year to see if symptoms reoccur or if the trees lose vigor.  If trees lose vigor and/or conks become visible, then the trees should be removed.  Because the silver leaf fungus limits water movement in infected branches, make sure that affected trees receive adequate water.  In general trees should receive approximately one inch of water per week during the growing season from natural rain and/or irrigation.  Eventually infected trees will likely decline to the point where they should be removed.  In some instances, monitoring trees may not be feasible.  In such situations, removing trees the first year that they show silver leaf symptoms may be the best management option.

Any branches or trunk sections removed from trees with silver leaf should be disposed of by burning (where allowed by local ordinance) or burying.

How do I avoid problems with silver leaf in the future?  Whenever possible, prune trees during the winter during dry periods when temperatures are below 32°F.  If you must prune during the growing season, only prune during dry periods.  Pruning at these times will decrease the risk of infection by the silver leaf fungus through pruning wounds. DO NOT use pruning paints or sealants when pruning.  At this time, there are no fungicides for silver leaf control.

For more information on silver leaf:  Contact your county Extension agent.

Gymnosporangium Rusts

What are Gymnosporangium rusts?  Gymnosporangium rusts are a group of closely related diseases caused by fungi that infect both junipers (in particular red cedar) and woody plants in the rose family such as, but not limited to, apple, crabapple, hawthorn and quince.  These fungi must infect both types of plants to complete their life cycles.  The most common Gymnosporangium rusts found in Wisconsin are cedar-apple rust, cedar-hawthorn rust and cedar-quince rust.  The names of these diseases are somewhat misleading, given that all three diseases can affect multiple rosaceous hosts in addition to those referenced in their names.

Yellow cedar-apple rust spots on an apple leaf (left) and slimy, orange, gelatinous cedar-apple rust galls on a juniper branch (right).
Yellow cedar-apple rust spots on an apple leaf (left) and slimy, orange, gelatinous cedar-apple rust galls on a juniper branch (right).

What do Gymnosporangium rusts look like?  On junipers, symptoms of Gymnosporagium rusts vary.  Cedar-hawthorn and cedar-apple rust fungi induce formation of irregularly-shaped brown galls, with cedar-hawthorn rust galls tending to be smaller in size (approximately 1/8 to 9/16 inch in diameter) than cedar-apple rust galls (approximately 1/4 to 2 inches in diameter).  Both types of galls produce distinctive slimy, orange, gelatinous appendages in the spring.  In contrast, the cedar-quince rust fungus causes juniper branch swellings.  Orange spores ooze from these swollen areas in the spring.

On rosaceous hosts, Gymnosporangium rust symptoms also vary.  Symptoms of cedar-hawthorn rust and cedar-apple rust appear in mid to late May, typically as circular, yellow-orange areas on leaves.  Eventually, tube-like structures (that have a fringe-like appearance) form on the undersides of leaves beneath the yellow spots.  Symptoms of cedar-quince rust typically become obvious later in the summer (most commonly on hawthorns) as swollen, spiny branches and/or fruits.

Where do Gymnosporangium rusts come from?  Several fungi in the genus Gymnosporangium cause Gymnosporangium rusts. These include Gymnosporangium juniperi-virginianae (cedar-apple rust), Gymnosporangium globosum (cedar-hawthorn rust), and Gymnosporangium clavipes (cedar-quince rust).  These fungi overwinter in infected branches and galls on junipers.  Spores oozed from the infected branches or produced in the gelatinous gall appendages drift to rosaceous hosts leading to leaf and fruit infections.  Similarly, spores produced in the tube-like structures/spines on rosaceous leaves and fruits drift to junipers leading to new branch infections and additional gall formation.

How do I save a tree or shrub with Gymnosporangium rust?  Gymnosporangium rusts are primarily cosmetic diseases that make susceptible plants unattractive, but rarely have long-term detrimental effects.  Gymnosporangium rusts on leaves can, for all practical purposes, be ignored.  Gymnosporangium rusts on juniper branches can be easily managed by pruning approximately four to six inches below swollen areas or galls.  Rosaceous hosts with infected branches can be pruned similarly.  Be sure to decontaminate pruning tools between cuts by treating them for at least 30 seconds in 70% alcohol (e.g., rubbing alcohol or certain spray disinfectants) or 10% bleach.  Decontaminating tools will prevent movement of rust fungi from branch to branch or from plant to plant during pruning.  If you use bleach, be sure to thoroughly rinse and oil your tools after pruning to prevent rusting.

Cedar-quince rust on hawthorn fruit.
Cedar-quince rust on hawthorn fruit.

How do I avoid problems with Gymnosporangium rusts in the future?  The best way to avoid Gymnosporangium rusts is to not grow junipers (particularly red cedar) and susceptible rosaceous hosts close to one another.  In urban settings where yards are small however, keeping both hosts adequately separated may be impossible.  Where Gymnosporangium rusts have consistently been a problem, consider using evergreens (e.g., pine, fir, spruce) and flowering trees and shrubs (e.g., cherry, plum, lilac) that are immune to these diseases.  If you decide that you want to mix junipers with apple, crabapple, hawthorn, and quince on your property, check at your local nursery for resistant varieties that will satisfy your landscaping needs.  In general, Chinese junipers (Juniperus chinensis) tend to be relatively resistant to Gymnosporangium rusts.

Fungicides treatments are also available to control Gymnosporangium rusts, although such treatments should be considered only as a last resort.  Among fungicides marketed for use by home gardeners, those containing chlorothalonil, copper, mancozeb, myclobutanil, propiconazole, and sulfur are labeled for use for Gymnosporangium rust control.  These products may be useful for controlling Gymnosporangium rusts on rosaceous hosts, but will likely not be effective if used on junipers.  For optimal control on rosaceous hosts, apply treatments when flower buds first show color, when half of the flowers are open, at petal-fall, seven to 10 days after petal fall and finally 10 to 14 days later.  Be sure to read and follow all label instructions of the fungicide(s) that you select to ensure that you use the products(s) in the safest and most effective manner possible.  In particular, be sure that you select appropriate products when treating trees and shrubs with edible fruit.  If you decide to use propiconazole or myclobutanil, alternate use of these active ingredients with use of at least one of the other active ingredients listed above (but DO NOT alternate propiconazole with myclobutanil) to help minimize potential problems with fungicide-resistant strains of Gymnosporangium rust fungi.

For more information on Gymnosporangium rusts:  See UW Bulletin A2598, Apple, Crabapple, Hawthorn and Juniper Disorder:  Cedar-Rust Complex (available at https://learningstore.extension.wisc.edu) and Juniper Diseases (available at https://store.extension.iastate.edu/Product/5247), or contact your county Extension agent.

Southern Blight

The Southern blight fungus produces large numbers of spherical, light tan to dark red resting structures called sclerotia (red arrow).

What is Southern blight?  Southern blight is a lethal fungal disease that is most common in the tropics and subtropics.  This disease causes damage in the southern United States and can even cause problems in temperate locations like Wisconsin during periods of warm, moist weather.  Southern blight has a wide host range, affecting over 500 plant species.  Vegetable and fruit hosts include tomato, pepper, onion, beet, rhubarb, strawberry, lettuce, cucumber, melon, carrot, asparagus and parsley.  Ornamental hosts include aster, black-eyed Susan, dahlia, daylily, gladiolus, hosta, impatiens, peony, petunia, rose, salvia, sedum and viola.  Small woody trees and shrubs can be affected as well.

What does Southern blight look like?  Southern blight initially leads to a water-soaked appearance on lower leaves or water-soaked lesions (spots) on lower stems.  Any plant part that is near or in contact with the soil may become infected.  Infected plants yellow and wilt, often within days of infection, particularly when the weather is moist and warm (80 to 95°F).  Fruit rots, crown rots and root rots are also typical symptoms of the disease.  Thick mats of white fungal threads (called mycelia) may grow from infected tissue, radiating from the plant onto the soil surface.  Sclerotia (small spherical structures that are about the size of mustard seeds) develop on infected tissue and on the soil surface.  Sclerotia range in color from light tan to dark reddish-brown to black.

Where does Southern blight come from?  Southern blight is caused by the fungus Athelia rolfsii (formerly Sclerotium rolfsii), which lives in soil, on plants (including weeds), and in plant debris.  The fungus can be spread through movement of infested soil and plant debris, on infected plants, in contaminated irrigation water, and through use of contaminated tools.  In Wisconsin, A. rolfsii most likely enters gardens on infected nursery stock or infested mulch.  Freezing temperatures will kill A. rolfsii mycelia, but sclerotia can survive temperatures as low as approximately 14ºF.

Southern blight can be a serious disease of vegetables, including tomatoes, leading to wilting and plant death. (Photo courtesy of Gary E. Vallad, University of Florida)

How can I save a plant with Southern blight?  Identify the extent of an infestation based on visible dead/dying plants, fungal mycelia and sclerotia.  Remove all plants (including roots), as well as three inches of soil, from at least 12 inches beyond the infested area.  Start at the edge of the infested area and work toward the center.  Bag all plants and soil and dispose of these materials in a landfill.  Turn any remaining soil in the infested area eight to 12 inches to bury any sclerotia that you may have missed.  This will reduce the length of time that the sclerotia will survive.  Grow non-susceptible plants (e.g., larger woody ornamentals) in the affected area for two to three years to allow time for sclerotia to die naturally.  Fungicides containing azoles (e.g., propiconazole, tebuconazole), fludioxonil, flutolanil, mancozeb, PCNB, strobilurins (e.g., azoxystrobin, fluoxastrobin), thiophanate-methyl, and triadimefon are all labeled for Southern blight control, but may have varying levels of effectiveness.  All of these products will likely be more effective if applied as preventive treatments rather than in an attempt to “cure” existing disease.  If you decide to use fungicides, DO NOT use one active ingredient for all treatments.  Instead, alternate the use of two or more unrelated active ingredients to help minimize problems with fungicide-resistant strains of A. rolfsii.  DO NOT alternate active ingredients that are chemically related (e.g., propiconazole and tebuconazole, or azoxystrobin and fluoxastrobin).  Be sure to read and follow all label instructions of the fungicide(s) that you select to ensure that you use the product(s) in the safest and most effective manner possible.

How can I prevent Southern blight in the future?  Inspect new plants for sclerotia and mycelia of A. rolfsii prior to transplanting.  Bag and dispose of diseased plants as described above.  Use high-quality mulches (e.g., shredded oak bark mulch, red cedar mulch) in your garden and avoid any mulches that you suspect might be contaminated with A. rolfsiiA. rolfsii thrives under moist conditions.  Therefore, thin existing gardens or space plants farther apart in new gardens to improve airflow and promote more rapid drying of foliage and soil.

For more information on Southern blight:  Contact your county Extension agent.

Apple Scab

What is apple scab?  Apple scab is a potentially serious fungal disease of ornamental and fruit trees in the rose family.  Trees that are most commonly and severely affected include crabapple, hawthorn, mountain-ash, apple and pear.  In ornamental trees, leaf loss caused by apple scab can make trees unsightly and aesthetically unappealing.  In fruit trees, leaf loss can reduce fruit yield.  In addition, the presence of apple scab on fruits can make the fruit difficult, if not impossible, to market.

Leaf spots typical of apple scab on apple. Typical apple scab leaf spots (left) and fruit lesions (right). The disease can cause total defoliation and make fruit unmarketable.

What does apple scab look like?  Apple scab lesions (diseased areas) are often first noticed on leaves, where they most commonly occur on the upper leaf surface.  Fruits are also very susceptible to infection.  Lesions on both leaves and fruits are roughly circular with feathery edges and have an olive green to black color.  Lesions can be as small as the size of a pinhead or as large a ½ inch in diameter.  When disease is severe, lesions can merge and cover a large portion of the leaf or fruit surface.  Defoliation of a tree (i.e., extensive leaf drop) often follows.

Where does apple scab come from?  Scab is caused primarily by the fungus Venturia inaequalis.  Other species of Venturia can be involved in diseases similar to apple scab.  In particular, Venturia pirina causes a very similar disease (called pear scab) on pear.  Venturia inaequalis and its relatives survive the winter in leaf litter from infected trees.  Scab is most severe in cool, wet years.

How do I save a tree with apple scab?  Apple scab is not a lethal disease, even when trees totally defoliate.  Once symptoms are visible, it is too late to treat a tree.  Proper long-term management of apple scab is important however.  If left unchecked, defoliation due to apple scab year after year can stress a tree and make it more susceptible to other, more serious and lethal diseases and insect pests.

How do I avoid problems with apple scab in the future?  If your crabapple, apple or pear tree has a history of severe scab, consider replacing it with a resistant variety.  See UW Bulletins A2105 (Apple Cultivars for Wisconsin), A2488 (Home Fruit Cultivars for Northern Wisconsin), and A2582 (Home Fruit Cultivars for Southern Wisconsin) for recommendations.  These publications are all available at https://learningstore.extension.wisc.edu/.

If you have a susceptible tree that you want to maintain, carefully collect up and discard fallen, infected leaves each autumn.  These leaves are a major source of spores that can infect leaves the following growing season.  Also, be sure to routinely thin your trees to open up the canopy and allow better airflow.  Thinning will promote more rapid drying of leaves, which is less favorable for apple scab development.

Even with proper fall leaf clean up and thinning, you may have to consider applying fungicide treatments to susceptible trees, particularly when the weather is cool and wet.  Captan, chlorothalonil, mancozeb, myclobutanil, propiconazole, or thiophanate methyl, are available for apple scab control, although not all of these active ingredients can be used on trees where fruit will eventually be eaten.  Be sure to read and follow all label instructions of the fungicide(s) that you select to ensure that you use the correct fungicide(s) in the safest and most effective manner possible.  Typically, you will need to treat every seven to 14 days from bud break until wet weather subsides.  DO NOT use myclobutanil, propiconazole, or thiophanate methyl as the sole active ingredient for all treatments.  If you decide to use one of these active ingredients, alternate its use with at least one of the other active ingredients listed above to help minimize problems with fungicide-resistant strains of the apple and pear scab fungi.

For more information on apple scab:  See UW-Extension Bulletins A2173 (Crabapple Disorder:  Scab) and A2594 (Mountain Ash Disorder:  Scab), both available at https://learningstore.extension.wisc.edu/, or contact your county Extension agent.