Category Archives: Disease – Broad Leafed Woody Ornamental

Plant Problems to Watch for in 2023

Lipstick Rust Lipstick Rust
Host:   Chinese juniper, apple, crabapple
Pathogen:   Gymnosporangium yamadae
Signs/Symptoms:   Brown blobs with orange gelatinous masses (juniper), red leaf spots (apple, crabapple)
Boxwood Blight Boxwood Blight
Host:   Boxwood
Pathogens:   Calonectria pseudonaviculata
Signs/Symptoms:   Circular, brown leaf spots followed by leaf drop and shrub death
For more information see:   UW Plant Disease Facts D0023
Late Blight Late Blight
Host:   Tomato, potato
Pathogen:   Phytophthora infestans
Signs/Symptoms:   Water-soaked spots on leaves, leathery areas on tomato fruits, rapid plant death
For more information see:   UW Plant Disease Facts D0068
Septoria Leaf Spot and Early Blight Septoria Leaf Spot and Early Blight
Host:   Tomato
Pathogens:   Septoria lycopersici and Alternaria solani
Signs/Symptoms:   Spotting and eventual total collapse of leaves, working from the bottom of the plant up
For more information see:   UW Plant Disease Facts D0100/46
Septoria Leaf Spot of Lilac Septoria Leaf Spot of Lilac
Host:   Lilac
Pathogen:   Septoria sp.
Signs/Symptoms:   Dead spots on leaves, potentially leading to complete leaf browning
Verticillium Wilt for 2023 Plant Problems Verticillium Wilt
Hosts:   Woody and herbaceous ornamentals, vegetables
Pathogens:   Verticillium sp.
Signs/Symptoms:   Wilting, branch dieback, plant death
For more information see: UW Plant Disease Facts D0121/D0122
Powdery Mildew Powdery Mildew
Hosts:   Herbaceous and woody ornamentals, fruit, vegetables, turf
Pathogens:   miscellaneous powdery mildew fungi
Signs/Symptoms:   Powdery white growth on leaves
For more information see:   UW Plant Disease Facts D0084/86/87
Rhizosphaera Needle Cast Rhizosphaera Needle Cast
Hosts:   Colorado blue spruce, other spruces
Pathogen:   Rhizosphaera kalkhoffii
Signs/Symptoms:   Browning/purpling of interior needles of lower branches, followed by needle drop
For more information see:   UW Plant Disease Facts D0093
Diplodia Shoot Blight and Canker Diplodia Shoot Blight and Canker
Hosts:   Austrian pine, other pines
Pathogen:   Diplodia spp.
Signs/Symptoms:   Dieback of brand tips with dead needles showing uneven lengths
For more information see:   UW Plant Disease Facts D0042
Chlorosis Chlorosis
Hosts:    Pin oak, red maple, birch, azalea, white pine, blueberry
Pathogen:   None
Signs/Symptoms:   Yellow leaves with dark green veins
For more information see:   UW Plant Disease Facts D0030
Improper Planting Improper Planting
Hosts:   Woody trees and shrubs
Pathogen:   None
Signs/Symptoms:   No root flare at the soil line, girdling roots, frost cracks, canopy thinning, early fall color, branch dieback, tree/shrub decline and death

For more information on plant problems to watch for:
See https://pddc.wisc.edu/ or contact your county Extension agent.

Plant Problems to Watch for in 2022

Boxwood Blight Boxwood Blight
Host:   Boxwood
Pathogens:   Calonectria pseudonaviculata
Signs/Symptoms:   Circular, brown leaf spots followed by leaf drop and shrub death
For more information see:   UW Plant Disease Facts D0023
Lipstick Rust Lipstick Rust
Host:   Chinese juniper, apple, crabapple
Pathogen:   Gymnosporangium yamadae
Signs/Symptoms:   Brown blobs with orange gelatinous masses (juniper), red leaf spots (apple, crabapple)
Late Blight Late Blight
Host:   Tomato, potato
Pathogen:   Phytophthora infestans
Signs/Symptoms:   Water-soaked spots on leaves, leathery areas on tomato fruits, rapid plant death
For more information see:   UW Plant Disease Facts D0068
Septoria Leaf Spot and Early Blight Septoria Leaf Spot and Early Blight
Host:   Tomato
Pathogens:   Septoria lycopersici and Alternaria solani
Signs/Symptoms:   Spotting and eventual total collapse of leaves, working from the bottom of the plant up
For more information see:   UW Plant Disease Facts D0100/46
Septoria Leaf Spot of Lilac Septoria Leaf Spot of Lilac
Host:   Lilac
Pathogen:   Septoria sp.
Signs/Symptoms:   Dead spots on leaves, potentially leading to complete leaf browning
Wood Rots Wood Rots
Hosts:   Woody trees and shrubs
Pathogens:   Miscellaneous wood rot fungi
Signs/Symptoms:   Shelf-like growths on trunks and branches
Canker Diseases Canker Diseases
Hosts:    Woody trees and shrubs
Pathogens:   Miscellaneous canker fungi
Signs/Symptoms:   Sunken areas on trunks/branches
For more information see:   UW Plant Disease Facts D0027, D0037, D0042, D0055, D0074, D0114
Virus Diseases Virus Diseases
Hosts:   All plants, particularly herbaceous ornamentals
Pathogen:   Miscellaneous plant viruses
Signs/Symptoms:   Blotchy leaf color, growth distortions
For more information see:   UW Plant Disease Facts D0036, D0063, D0067, D0115, D0116, D0130
Rhizosphaera Needle Cast Rhizosphaera Needle Cast
Hosts:   Colorado blue spruce, other spruces
Pathogen:   Rhizosphaera kalkhoffii
Signs/Symptoms:   Browning/purpling of interior needles of lower branches, followed by needle drop
For more information see:   UW Plant Disease Facts D0093
Chlorosis Chlorosis
Hosts:    Pin oak, red maple, birch, azalea, white pine, blueberry
Pathogen:   None
Signs/Symptoms:   Yellow leaves with dark green veins
For more information see:   UW Plant Disease Facts D0084
Improper Planting Improper Planting
Hosts:   Woody trees and shrubs
Pathogen:   None
Signs/Symptoms:   No root flare at the soil line, girdling roots, frost cracks, canopy thinning, early fall color, branch dieback, tree/shrub decline and death

 

Boxwood Blight – Pest Alert

What is boxwood blight?  Boxwood blight (also known as box blight and boxwood leaf drop) is a devastating disease of boxwood (Buxus spp.) that can cause leaf loss and eventual death of affected shrubs.  Boxwood shrubs are commonly grown as hedges and as individual plants in home landscapes and public gardens.  Boxwood blight can affect any type of boxwood (Buxus spp.) including European or common boxwood (Buxus sempervirens)Korean littleleaf boxwood (B. sinica var. insularis), and Japanese littleleaf boxwood (B. microphylla var. japonica).  In addition, the disease has been reported on Japanese and Allegheny pachysandra (Pachysandra terminalis and Pachysandra procumbens respectively), two common groundcovers.  Boxwood blight has been found in Europe and New Zealand, and was first confirmed in the U.S. in 2011.  The disease was first detected in Wisconsin (in Kenosha County) in 2018.  The disease has subsequently been found in Dane, Milwaukee and Ozaukee Counties.

Boxwood blight can cause severe leaf loss and eventual death of boxwood shrubs. (Photo courtesy of David Clement, University of Maryland Extension)
Boxwood blight can cause severe leaf loss and eventual death of boxwood shrubs. (Photo courtesy of David Clement, University of Maryland Extension)

What does boxwood blight look like?  Initially, brown spots appear on the leaves.  The spots eventually enlarge and merge together.  Infected leaves turn brown and fall off.  Boxwood blight can cause total leaf loss on a shrub within days of the first onset of symptoms.  Dark brown to black sunken areas can also form anywhere on the stems, leading to branch dieback  Boxwood blight often kills plants shortly after all of the leaves drop.  Damage from winter burn (see UW Plant Disease Facts D0127, Winter Burn), dog urine and other diseases such as Volutella blight may look superficially similar to symptoms of boxwood blight.

Where does boxwood blight come from?  Boxwood blight is caused by the fungus Calonectria pseudonaviculata (sometimes referred to as Cylindrocladium pseudonaviculatum or Cylindrocladium buxicola) which thrives in humid, warm conditions.  The fungus is typically introduced into any area on nursery plants that are infected, but not showing symptoms.  Holiday wreaths containing boxwood sprigs have also been documented as a source of the boxwood blight fungus.  Once the fungus has been introduced into the landscape, spores can be easily spread by splashing water (e.g., rain or sprinklers), wind or contaminated gardening tools (e.g., pruners, shovels, gloves).  The boxwood blight fungus can survive and produce spores in dead boxwood leaves and branches (including those that have fallen onto the ground) for several years.

How can I save a plant with boxwood blight?  Because boxwood blight is new to Wisconsin and relatively rare, eradicating the causal fungus may be possible.  Therefore, if you find boxwood blight, remove and destroy any affected shrubs.  Currently, free testing for boxwood blight is available through the UW-Madison Plant Disease Diagnostics Clinic (https://pddc.wisc.edu/).  Plants (roots and all) confirmed to have boxwood blight, as well as any leaves or branches that have fallen from these plants, should be removed and destroyed by burning (where allowed by local ordinance), deep burying (at least two feet deep) or double bagging (in plastic garbage bags), then landfilling.  DO NOT compost any parts of infected shrubs.  Thoroughly decontaminate any tools used in the removal process by treating them for at least 30 seconds in 70% alcohol (e.g., rubbing alcohol or certain spray disinfectants) or (as a last resort) in 10% bleach.  If you use bleach, be sure to thoroughly rinse and oil tools after pruning to prevent rusting.

How can I avoid problems with boxwood blight in the future?  

Consider using shrubs other than boxwood in your landscape.  If you decide to use boxwood, choose boxwood blight resistant varieties where possible.  In Wisconsin, hybrid boxwoods ‘Green Gem’ and ‘Karzgreen (Green Ice®), Japanese littleleaf boxwood varieties ‘Jim Stauffer’, ‘Little Missy’ and ‘Winter Gem’, and Korean littleleaf boxwood varieties ‘Eseles’ (Wedding Ring®), ‘Franklin’s Gem’, ‘Pincushion’, ‘Wee Willie’, ‘Winter Beauty’ and ‘Wintergreen’ are hardy to at least USDA hardiness zone 5 and have been documented to be resistant to boxwood blight.  Always buy boxwood shrubs from local, reputable suppliers who have thoroughly inspected boxwood plants for evidence of boxwood blight.

Leaf spots typical of boxwood blight on boxwood sprigs in a holiday wreath. (Photo courtesy Purdue PPDL)
Leaf spots typical of boxwood blight on boxwood sprigs in a holiday wreath. (Photo courtesy Purdue PPDL)

Isolate new boxwood shrubs from established boxwoods for several weeks before planting, as boxwood blight symptoms not become apparent until weeks after purchase.  DO NOT plant boxwoods in areas where boxwood blight has been a problem in the past, as the fungus can survive in boxwood debris (e.g., leaves and branches) for several years.  When planting, space boxwood plants far enough apart from each other, as well as other shrubs, so that branches on adjacent shrubs do not overlap.  This will increase air flow between plants and promote a drier environment that will be less favorable for boxwood blight development.  Avoid watering plants with sprinklers or overhead with hoses; instead use a soaker or drip hose.  This will limit splash of spores from plant to plant and also promote a drier environment that is less favorable for disease.

Be cautious when buying holiday wreaths or other garlands.  Avoid holiday decorations that contain boxwood, whenever possible.  If you are unsure whether a wreath that you have purchased contains boxwood, assume that it does, and dispose of it appropriately by burning, deep burying or double bagging and landfilling as described above.  Be careful to collect and dispose of any leaves or branches that may have fallen from wreaths as well.  Make sure that no potentially contaminated materials end up near boxwood shrubs in your yard.  Under NO circumstances should you attempt to compost any suspected boxwood materials.

Once boxwood blight has been reported near your location, you may want to consider using preventative fungicide treatments for management.  Fungicides containing chlorothalonil (alone or in combination with thiophanate-methyl or tebuconazole), fludioxonil, metconazole, and tebuconazole (as a stand-alone product) have been shown to provide good control of boxwood blight if applied prior to the development of any symptoms.  These fungicides will not cure existing disease.  If you decide to use fungicides, you will need to treat every seven to 14 days throughout the growing season.  DO NOT use fludioxonil, metconazole, or tebuconazole as the sole active ingredient for all treatments.  If you decide to use one of these active ingredients, alternate its use with at least one of the other active ingredients listed above (except DO NOT alternate metconazole and tebuconazole as these products are chemically related).  Alternating active ingredients will help minimize problems with fungicide-resistant strains of the boxwood blight fungus.  Be sure to read and follow all label instructions of the fungicide(s) that you select to ensure that you use the product(s) in the safest and most effective manner possible.

Finally, routinely (e.g., weekly) check boxwood plants for boxwood blight.  Immediately remove any symptomatic plants and fallen leaves and branches, and dispose of them as described above.

For more information on boxwood blight:  Contact your county Extension agent.

Thyronectria Canker

What is Thyronectria canker?  Thyronectria canker is a common fungal disease of honeylocust (Gleditsia triacanthos), occurring wherever this tree is grown.  Black locust (Robinia pseudoacacia) and Kentucky coffeetree (Gymnocladus dioicus) have also been reported to be susceptible to the disease.  Thyronectria canker is non-lethal and typically causes relatively minor damage to affected trees.

Thyronectria canker leads to sunken areas on honeylocust branches that are peppered with black spots.
Thyronectria canker leads to sunken areas on honeylocust branches that are peppered with black spots.

What does Thyronectria canker look like?  Thyronectria canker causes branch dieback.  Affected branches are typically relatively small in diameter (approximately one inch or less), although larger branches can become infected.  On smaller branches, distinct sunken areas (cankers) form at the point of infection.  Within the sunken area, small dark-brown to black spots are typically visible.

Where does Thyronectria come from?  Thyronectria canker is caused by the fungus Thyronectria austoamericana (sometimes written Thyronectria austo-americana).  The spots visible within the sunken areas on infected branches are clusters of fruiting bodies (i.e., reproductive structures) of the fungus.  These structures produce multicelled, light- to medium-brown spores that, when released, can blow to susceptible trees, leading to new infections.  Long periods of wet weather are favorable for infection to occur.

How do I save a tree with Thryronectria canker?  Remove infected branches by pruning four to six inches below obviously infected areas on branches.  Be sure to prune only when it is dry, and be sure to disinfest pruning tools between cuts by treating them for at least 30 seconds with 70% alcohol (e.g., rubbing alcohol straight out of the bottle), spray disinfectants (as long as they contain 60 to 70% alcohol) or 10% bleach.  If you use bleach, be sure to thoroughly rinse and oil tools after you are done pruning to prevent rusting.  Dispose of branches by burning (where allowed) or burying them.  DO NOT use fungicides for control of this disease.

How do I avoid problems with Thyronectria canker in the future?  Make sure your honeylocust tree is properly fertilized and watered to reduce stress and promote vigorous growth.  Fertilize your honeylocust only if you have soil and foliage nutrient tests that indicate nutrient deficiencies that need to be corrected.  The UW Soil and Forage Lab (https://uwlab.soils.wisc.edu/) can assist with testing.  An established honeylocust tree (i.e., a tree that has been planted for three or more years) requires approximately one inch of water per week from the time it buds out in the spring, through the summer and into the fall up until it starts to turn its normal fall color.  When there is insufficient rain, water at the drip line of the tree (i.e., the edge of where the branches extend), or more extensively in the root zone if possible, using a drip or soaker hose.  Remove grass out to the drip line of the tree, and mulch this area with a high quality mulch (e.g., shredded oak bark mulch, one of the cedar mulches).  Use one to two inches of mulch if you have a heavier (e.g., clay) soil and three to four inches if you have a lighter (e.g., sandy) soil.  Keep mulch four inches from the trunk of the tree.  Finally, consider routine maintenance pruning by a certified arborist (see https://www.waa-isa.org/) to thin the canopy of your honeylocust tree.  Thinning will provide better airflow through the tree, promoting more rapid drying of branches and leaves, thus leading to a less favorable environment for infections to occur.

For more information on Thyronectria canker:  Contact your county Extension agent.

Lichens

There are many types of lichens. Crustose lichens (left) are crust-like and adhere tightly to the surface upon which they grow. Foliose lichens (right) are leaf-like and composed of flat sheets of tissue that are not tightly bound.
There are many types of lichens. Crustose lichens (left) are crust-like and adhere tightly to the surface upon which they grow. Foliose lichens (right) are leaf-like and composed of flat sheets of tissue that are not tightly bound.

What are lichens? Lichens are organisms that arise from mutually beneficial interactions between certain fungi and algae. The fungi provide the physical structures of the lichens, as well as protection for the algae. The algae, in turn, produce food for the fungi via photosynthesis.

What do lichens look like? Lichens come in four basic growth forms. Crustose lichens are crust-like and adhere tightly to the surface upon which they grow. Foliose lichens are leaf-like and composed of flat sheets of tissue that are not tightly bound together. Squamulose lichens are composed of scale-like parts. Fruticose lichens are composed of free-standing branching tubes.

Where do lichens come from? Lichens are everywhere. There are an estimated 13,500 to 17,000 species of lichens, and lichens can be found growing in tropical, temperate and polar regions throughout the world. Lichens will grow on almost any surface that is stable and reasonably well-lit. In temperate regions, lichens can often be found growing on the bark of trees or old fence posts. Others lichens grow in less hospitable places, such as bare rock surfaces or old headstones in graveyards, where they aid in the breakdown of rocks and the formation of soil.

There are many types of lichens. Crustose lichens (left) are crust-like and adhere tightly to the surface upon which they grow. Foliose lichens (right) are leaf-like and composed of flat sheets of tissue that are not tightly bound.
There are many types of lichens. Crustose lichens (left) are crust-like and adhere tightly to the surface upon which they grow. Foliose lichens (right) are leaf-like and composed of flat sheets of tissue that are not tightly bound.

How do I save a tree with lichens? DO NOT PANIC! Lichens do not harm trees; they are not pathogens or parasites, and do not cause disease. Lichens are self-reliant, with the algal component of the lichen producing food for the organism via photosynthesis. Lichens absorb water and minerals from rainwater and the atmosphere, and because of this, they are extremely sensitive to air pollution. As a result, the presence or absence of certain lichen species can be used as an indicator of levels of atmospheric pollutants. Information on the abundance and species of lichens growing in an area can give a good indication of the local air quality.

For more information on lichens: Contact your county Extension agent.

Ten Common Plant Diseases/Disorders You Can Diagnose by Eye

Powdery Mildew Powdery Mildew
Hosts:   Herbaceous and woody ornamentals, fruits, vegetables, turf
Pathogens:   Miscellaneous powdery mildew fungi
Signs/Symptoms:  Powdery white growth on leaves
For more information see:       UW Plant Disease Facts D0084/86/87
Tar Spot - Ten Common Plant Diseases Tar Spot
Hosts:  Maples
Pathogen:   Rhytisma spp.
Signs/Symptoms:  Tarry areas (either solid spots or clusters of small spots) on leaves
For more information see:       UW Plant Disease Facts D0110
Peach Leaf Curl Peach Leaf Curl
Hosts:  Peach
Pathogen:   Taphrina deformans
Signs/Symptoms:  Light-green, yellow or purplish-red puckered areas on leaves
For more information see:       UW Plant Disease Facts D0076
Sooty Mold Sooty Mold
Hosts:  Any plant
Pathogen:   Miscellaneous sooty mold fungi
Signs/Symptoms:  Powdery black growth on leaves or needles
For more information see:       UW Bulletin A2637
Chlorosis Chlorosis
Hosts:  Oak, red maple
Cause:   Iron or manganese deficiency, often induced by high soil pH
Signs/Symptoms:  Yellow leaves with dark green veins
For more information see:       UW Plant Disease Facts D0030
Gymnosporangium Rusts Gymnosporangium Rusts
Hosts:  Juniper, apple, crabapple, hawthorn, quince
Pathogen:   Gymnosporangium spp.
Signs/Symptoms:  Brown blobs with orange gelatinous masses (juniper); yellow/orange leaf spots (other hosts)
For more information see:       UW Plant Disease Facts D0058
Black Knot Black Knot
Hosts:  Prunus spp. (plum and cherry)
Pathogen:   Apiosporina morbosa
Signs/Symptoms:  Black poop-like growths on branches
For more information see:       UW Plant Disease Facts D0018
Elderberry Rust Elderberry Rust
Hosts:  Elderberry
Pathogen:   Puccinia sambuci
Signs/Symptoms:  Light yellow, powdery growths on branches
For more information see:       UW Plant Disease Facts D0049
Golden Canker Golden Canker
Hosts:  Pagoda dogwood
Pathogen:   Cryptodiaporthe corni
Signs/Symptoms:  Gold-colored branches with orange spots
For more information see:       UW Plant Disease Facts D0055
Dog Vomit Slime Mold Dog Vomit Slime Mold
Hosts:  Any plant and on mulch
Cause:   Fuligo septica
Signs/Symptoms:  Scrambled egg-like masses on mulch or at the base of plants
For more information see:       UW Plant Disease Facts D0102

For more information on common plant diseases:  See https://pddc.wisc.edu/ or contact your county Extension agent.

Deciduous Tree Leaf Disease Quick Reference

Anthracnose for Quick Guide Anthracnose
Hosts:  Most trees, commonly ash, maple and oak
Pathogens:  Gloeosporium spp. as well as other fungi
Signs/Symptoms:  Blotchy dead areas on leaves
For more information see:  UW Plant Disease Facts D0002
Purple-bordered leaf spot Purple-Bordered Leaf Spot
Host:  Amur, Japanese, red, silver and sugar maple
Pathogen:  Phyllosticta minima
Signs/Symptoms:  Discrete, circular leaf spots with purple borders
For more information see:  UW Plant Disease Facts D0089
 Tubakia leaf spot Tubakia (Actinopelte) Leaf Spot
Hosts:  Oak
Pathogen:  Tubakia spp. (Actinopelte spp.)
Signs/Symptoms:  Discrete circular, or irregular blotchy dead areas on leaves
For more information see:  UW Plant Disease Facts D0118
 Scab Apple Scab
Hosts:  Apple, crabapple, pear, mountain-ash
Pathogen:  Venturia inaequalis, V. pirina
Signs/Symptoms:  Circular, black leaf spots with feathery edges; eventual leaf loss
For more information see:  UW Plant Disease Facts D0004
 Cedar-Apple Rust Gymnosporangium Rusts
Hosts:  Apple, crabapple, hawthorn
Pathogens:  Gymnosporangium spp.
Signs/Symptoms:  Bright yellow-orange, circular leaf spots
For more information see:  UW Plant Disease Facts D0058
 Powdery Mildew Powdery Mildew
Hosts:  Most deciduous trees
Pathogens:  Several genera of powdery mildew fungi
Signs/Symptoms:  Uniform/blotchy powdery white areas on upper and lower leaf surfaces
For more information see:  UW Plant Disease Facts D0087
 Downy Leaf Spot Downy Leaf Spot
Hosts:  Hickory, walnut
Pathogen:  Microstroma juglandis
Signs/Symptoms:  Discrete powdery white areas on lower leaf surfaces
 Clorosis Chlorosis
Hosts:  Oak, red maple
Cause:   Iron or manganese deficiency, often induced by high soil pH
Signs/Symptoms:  Yellow leaves with dark green veins
For more information see:  UW Plant Disease Facts D0030
 Scorch Scorch
Hosts:  Most deciduous trees
Cause:   Water stress induced by drought, high soil salt content, or other water-limiting factors
Signs/Symptoms:  Dead tissue on leaf margins
 Tatters Tatters
Hosts:  Most deciduous trees, but commonly oak
Cause:  Possible early season cold injury
Signs/Symptoms:  Lacy, tattered-looking leaves
For more information see:  UW Plant Disease Facts D0111

For more information on deciduous tree leaf diseases:  See https://pddc.wisc.edu/ or contact your County Extension agent.

Elderberry Rust

What is elderberry rust?  Elderberry rust is a visually striking fungal disease that affects stems, leaves and flowers of plants in the genus Sambucus (i.e., elderberries).  The disease also affects sedges (Carex spp.).  On elderberries grown as ornamentals, as well as on sedges, the disease is primarily a cosmetic problem.  However, if elderberries are grown for fruit, the disease can disrupt flower and fruit formation, thus reducing fruit yield.

An elderberry rust gall on elderberry (left) and leaf spots caused by elderberry rust on sedge (right). Photos courtesy of Jenell Bindl (left) and Michele Warmund, University of Missouri (right)
An elderberry rust gall on elderberry (left) and leaf spots caused by elderberry rust on sedge (right). Photos courtesy of Jenell Bindl (left) and Michele Warmund, University of Missouri (right)

What does elderberry rust look like?  Elderberry rust is most noticeable on elderberries where it causes growth distortions and swellings (i.e., galls) on leaves and stems.  Galls are often very large, bright yellow and powdery from spores produced by the causal fungus.  In extreme cases, galls can resemble banana slugs that have attached themselves to branches.  Infected flowers become thick, swollen and green-tinged rather than white.  Affected plant parts are covered with a network of small (approximately 1/16 inch in diameter) ring-like spots.  These spots are reproductive structures of the rust fungus and produce the powdery spores that coat the galls.

On sedges, elderberry rust causes brownish leaf spots, often with yellow halos.  The spots eventually erupt releasing powdery, rusty-orange spores.

Where does elderberry rust come from?  Elderberry rust is caused by the fungus Puccinia sambuci, also known as Puccinia bolleyana.  The fungus overwinters in sedge debris, and spores produced in this debris blow to elderberry plants in the spring, leading to infection and gall formation.  Spores produced in elderberry galls blow back to sedges, where infection of newly produced leaves (and other plant parts) occurs.  These infections lead to spotting and to the formation of a third type of spore that reinfects sedges causing additional spotting.  Late in the season a fourth type of spore is produced that serves as the overwintering phase of the fungus.  Infection of both elderberries and sedges is favored by wet weather.

How do I save plants with elderberry rust?  Elderberry rust is not a lethal disease on either elderberry or sedge.  When galls form on elderberry, simply prune these out.  This will make elderberry plants more aesthetically pleasing and limit spread of the fungus to sedges.  When pruning, cut branches four to six inches below each gall.  Between cuts, decontaminate pruning tools by treating them for at least 30 seconds with 70% alcohol (e.g., rubbing alcohol straight out of the bottle), a spray disinfectant containing 60-70% active ingredient, or a 10% bleach solution (i.e., one part of a disinfecting bleach and nine parts water).  If you decide to use bleach, be sure to rinse your tools thoroughly after you are done pruning and then oil them to prevent rusting, which can be caused by bleach use.  Dispose of galls by burning (where allowed by local ordinance) or burying them.

How do I avoid problems with elderberry rust in the future?  In landscape settings, the best way to avoid problems with elderberry rust is to remove any sedges that are growing near elderberry plants.  The farther the distance between elderberries and sedges, the less likely that elderberry rust will be an issue.  Also, increase airflow around elderberry plants by thinning them and removing surrounding plants.  Increased airflow will dry plants more rapidly and make the environment less favorable for infection.  DO NOT use a sprinkler to water plants, as that wets leaves and provides a better environment for infections to occur.  Instead, use a soaker or drip hose to apply supplemental water to the soil at the drip lines of the plants (i.e., the edges of where the branches extend).  While fungicides are available for rust control in commercial elderberry production, these products are not recommended for use in home garden settings.

For more information on elderberry rust:  Contact your county Extension agent.

Tobacco Mosaic

Tobacco mosaic causing a blotchy light and dark coloring (mosaic) of tobacco leaves.
Tobacco mosaic causing a blotchy light and dark coloring (mosaic) of tobacco leaves.

What is tobacco mosaic?  Tobacco mosaic is a common viral disease of worldwide distribution that affects over 200 species of herbaceous and, to a lesser extent, woody plants.  Common hosts include tobacco, solanaceous vegetables (e.g., pepper, tomato) and vining vegetables (e.g., cucumber, melon, squash), as well as a wide range of ornamentals (e.g., begonia, coleus, geranium, impatiens, million bells, petunia).  The disease has its biggest impact on vegetables, where it can reduce yield and affect quality to the point that commercial crops cannot be marketed.

What does tobacco mosaic look like?  Symptoms of tobacco mosaic vary in type and severity depending on the plant infected, plant age, the variant of the virus involved, and environmental conditions.  On leaves, typical symptoms include blotchy light and dark areas (called mosaic); cupping, curling, elongation (strapping), roughening, wrinkling and other growth distortions; and smaller than normal size.  Fruits may have a blotchy color, ripen unevenly, be malformed or have an off flavor.  Entire infected plants are often stunted.  Other viral diseases like cucumber mosaic (see UW Plant Disease Facts D0036, Cucumber Mosaic) can cause symptoms similar to tobacco mosaic.  Often, multiple viral diseases can simultaneously affect a single plant.  Certain herbicide exposures (see UW Plant Disease Facts D0060, Herbicide Damage), nutrient deficiencies or toxicities, high temperature and even insect feeding can also cause similar symptoms.  Proper diagnosis of tobacco mosaic requires lab testing.

Where does tobacco mosaic come from?  Tobacco mosaic is caused by Tobacco mosaic virus (TMV), the first virus ever identified.  Numerous variants (strains) of the virus have subsequently been described.  TMV survives in infected plants (including viable seeds), as well as in debris from these plants.  Plant-based products (most notoriously tobacco products) can harbor the virus.  TMV is very stable and can survive for long periods of time; there are reports of TMV surviving and remaining infectious after 50 years in storage at 40°F.  Because of its stability, TMV can survive on and be picked up from hands, clothing, gardening tools, work surfaces and any other object (e.g., door knobs) that gardeners may handle.

TMV is highly transmissible and is commonly spread by handling infected plants, then healthy plants.  Spread via gardening tools is also very common.  No specific insects spread TMV (the way that aphids spread Cucumber mosaic virus).  However, bees and chewing insects (e.g., grasshoppers) can transmit TMV through casual contact or their feeding as they move from plant to plant.

Leaf growth distortions caused by tobacco mosaic.
Leaf growth distortions caused by tobacco mosaic.

How do I save a plant with tobacco mosaic?  There is no cure for tobacco mosaic.  Once infected, plants remain infected for life, and typically the virus spreads throughout the plant from the point of infection.  Infected plants and any associated debris should be burned (where allowed by local ordinance) or double-bagged and disposed of in a landfill.  DO NOT compost plants with this disease.  Thoroughly decontaminate any items that have come into contact with infected plants or their debris by treating them for a minimum of one minute with:

  • 2.75 tablespoons Alconox® (a lab detergent) plus 2.5 tablespoons sodium lauryl sulfate (SLS), also known as sodium dodecyl sulfate (SDS), in one gallon of water, or
  • 14 dry ounces of trisodium phosphate in one gallon of water.

These ingredients can be ordered on the internet.  If you decide to use SLS (SDS), be sure to wear gloves, safety goggles and a dust mask, and mix the solution in a well-ventilated area as SLS (SDS) is a known skin and eye irritant.  Once treated, rinse items with sufficient water to remove any residues.  Also, thoroughly wash your hands with soap and water, and launder any clothing that you wore while disposing of infected plants and debris.

How do I avoid problems with tobacco mosaic virus in the future?  Inspect plants prior to purchase for any symptoms of tobacco mosaic, and DO NOT buy symptomatic plants.  Purchase seed from a reputable supplier that routinely inspects their seed-producing plants for symptoms of viral (and other) diseases.  If you use tobacco products, DO NOT use them around plants.  Also, wash your hands thoroughly with soap and water prior to handling plants, and consider wearing freshly laundered clothing when gardening.  Finally, decontaminate (as described above) any items that might harbor TMV to help prevent spread.  Even if you do not use tobacco products, routine handwashing and decontamination of gardening tools and other items can help prevent tobacco mosaic from being a problem.

For more information on tobacco mosaic:  Contact your county Extension agent.

Sudden Oak Death – Pest Alert

What is sudden oak death?  Sudden oak death (SOD), also called Ramorum leaf blight or Ramorum dieback, is an oftentimes lethal disease that has caused widespread death of tanoak (Lithocarpus densiflorus), coast live oak (Quercus agrifolia), California black oak (Quercus kelloggii), and Shreve oak (Quercus parvula var. shrevei) in California.  The disease can affect or has been reported in association with a wide range of woody and herbaceous plants including, but not limited to bigleaf maple (Acer macrophyllum), Bodnant viburnum (Viburnum X bodnantense), ‘Brouwer’s Beauty’ pieris (Pieris floribunda X japonica), California bay laurel (Umbellularia californica), California buckeye (Aesculus californica), California coffeeberry (Rhamnus californica), California honeysuckle (Lonicera hispidula), canyon live oak (Quercus chrysolepis), coast redwood (Sequoia sempervirens), doublefile viburnum (Viburnum plicatum var. tomentosum), douglas-fir (Pseudotsuga menziesii var. menziesii), evergreen huckleberry (Vaccinium ovatum), Formosa firethorn (Pyracantha koidsumii), ‘Forest Flame’ pieris (Pieris formosa X japonica), Himalaya pieris (Pieris formosa), Japanese camellia (Camellia japonica), Japanese pieris (Pieris japonica), laurustinus (Viburnum tinus), madrone (Arbutus menziesii), manzanita (Arctostaphylos manzanita), rhododendron (Rhododendron spp.), Sasanqua camellia (Camellia sasanqua), toyon (Heteromeles arbutifolia), western starflower (Trientalis latifolia), and witch hazel (Hamamelis virginiana), Burkwood viburnum (Viburnum X burkwoodii), California hazelnut (Corylus cornuta), Camellia X williamsii, cascara (Rhamnus purshiana), Chinese pieris (Pieris formosa var. forrestii), common lilac (Syringa vulgaris), David viburnum (Viburnum davidii), drooping leucothoe (Leucothoe fontanesiana), European beech (Fagus sylvatica), European cranberrybush viburnum (Viburnum opulus), European turkey oak (Quercus cerris), European yew (Taxus baccata), fragrant viburnum (Viburnum farreri), grand fir (Abies grandis), Holm oak (Quercus ilex), horse-chestnut (Aesculus hippocastanum), lingonberry (Vaccinium vitis-ideae), mountain laurel (Kalmia latifolia), Northern red oak (Quercus rubra), Pieris formosa var. forrestii X Pieris japonica, poison oak (Toxicodendron diversiloba), Prague viburnum (Viburnum X pragense), reticulate camellia (Camellia reticulata), salmonberry (Rubus spectabilis), Southern red oak (Quercus falcata), strawberry tree (Arbutus unedo), sweet chestnut (Castanea sativa), Viburnum X carlcephalum X Viburnum utile, Victorian box (Pittosporum undulatum), wayfaringtree viburnum (Viburnum lantana), and wood rose (Rosa gymnocarpa).

Rapid wilting and die back of branch tips can be a symptom of ramorum dieback.
Rapid wilting and die back of branch tips can be a symptom of ramorum dieback.

SOD was first reported in the US in California and has subsequently been found in other US states, including in Wisconsin in 2019.  SOD has also been reported in Europe.

What does sudden oak death look like?  Symptoms of SOD vary depending upon the plant species infected.  On some hosts, infections occur primarily on leaves leading to light brown leaf spots and blotches.  These leaf symptoms may be indistinguishable from other, more common, leaf spots and blights, or may mimic sunburn or leaf scorch symptoms.  Twigs and branches that become infected often wilt, forming a “shepherd’s-crook”, and subsequently die back.  Infection of tree trunks leads to cankers (i.e., sore-like areas) that produce large amounts of an amber to black colored ooze.  This ooze can dry to form a stained area on the bark.  Removing the bark over the affected area will reveal discolored wood beneath that sometimes (but not always) has a black border.  Cankers can eventually expand to girdle trunks, thus resulting in the death of the tree or shrub.  Trunk infections appear not to extend into the root system of the plant.  Once SOD cankers develop, other pathogens may invade the infected areas, accelerating tree or shrub death and complicating the diagnosis of the disease.

Where does sudden oak death come from?  SOD is caused by the fungus-like water mold Phytophthora ramorum, which was first recognized as a pathogen in 1995.  Phytophthora ramorum can be spread over long distances through movement of infected plants or infested plant parts.  The organism can also be moved with contaminated soil (e.g., on vehicle tires, tools, or shoes), or in contaminated water.  Once established on plants in a given location, the organism produces reproductive structures (called sporangia) that can be moved from plant to plant by rain splash, or wind.  Phytophthora ramorum was introducing into Wisconsin in 2019 on nursery stock grown in the state of Washington.

Ramorum leaf blight symptoms can mimic those of other leaf spots and blights.
Ramorum leaf blight symptoms can mimic those of other leaf spots and blights.

How do I save a plant with sudden oak death?  If you believe you have seen a plant that has SOD, please IMMEDIATELY submit a sample to the UW-Madison Plant Disease Diagnostics Clinic (PDDC).  See below for address details.  Double bag suspect plant tissue in sealable plastic bags and place the bagged specimen in a box or envelope for shipping.  Include contact information (complete address, phone number, email address) in a separate sealable plastic bag with the sample.  Tape over all of the edges of boxes and envelopes used for shipping to keep everything sealed inside.  Write on the box or envelope that the box or envelope contains a suspect SOD sample.  If you have questions about collecting or submitting a sample, contact PDDC staff at (608) 262-2863 or at pddc@wisc.edu.

Because Phytophthora ramorum is a regulated, quarantined pathogen, DO NOT remove the affected plant (or parts thereof) or take the plant from the site where it is located, other than to collect a specimen for submission for a diagnosis.  Be sure to decontaminate any tools or other items that come into contact with the plant (including those used to collect a diagnostic sample) by treating them for at least 30 seconds in 10% bleach.  Thoroughly rinse and oil tools after decontamination to prevent rusting.  If a plant tests positive for Phytophthora ramorum, it will be removed and destroyed to help prevent further spread of the pathogen.

How do I avoid problems with sudden oak death in the future?  Carefully inspect any new nursery stock upon delivery (or prior to purchase, if possible) for symptoms of SOD.  Keep new stock isolated from older stock as long as possible, to minimize possible movement of the pathogen should the disease develop after plants have arrived.  If you see any suspect symptoms, alert the PDDC so that arrangements can be made for proper testing for Phytophthora ramorum.

For more information or help in diagnosing sudden oak death:  Contact Brian Hudelson, UW-Madison Plant Disease Diagnostic Clinic, Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI  53706-1598, phone: (608) 262-2863, email: pddc@wisc.edu, see the USDA APHIS sudden oak death website https://www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-programs/pests-and-diseases/phytophthora-ramorum/sod, or contact your County Extension agent.