Category Archives: Monthly Column

Plant Disease Pointers – January 2022: Decontaminating Your Way to Healthier Plants

Bleach Bottle IconWhen discussing plant diseases and their management, I often emphasize decontaminating pots, gardening tools and work surfaces as one part of a successful disease management strategy.  To kill fungi and bacteria (and to a lesser extent viruses) I often recommend treating items for at least 30 seconds with alcohol, commercial disinfectants, or bleach.

When using alcohol, a 70% solution is optimal for decontamination.  I use ethanol for decontaminating items in my lab, but rubbing (i.e., isopropyl) alcohol is a better option for home gardeners, as it is readily available at a local drugstore or grocery store.  Rubbing alcohol is formulated as a 70% solution and can be used straight out of the bottle.

Commercial disinfectants come in many forms.  I look for products that contain alcohol (you may see ethanol listed as an ingredient) and where the percentage of all active ingredients is as close to 70% as possible.  If you opt to use a spray disinfectant, spray items until they drip and then allow them to air dry.

Bleach is probably the most challenging material to use for decontamination.  Back when I started at the PDDC (almost 25 years ago), most bleach that you could buy at the grocery store was formulated to be 5.25% sodium hypochlorite (the active ingredient), and you just had to make a 10% solution (i.e., 1 part bleach and 9 parts water) to yield an approximate 0.5% solution that is optimal for decontaminating items.  Nowadays, the bleach that you buy can contain very different concentrations of sodium hypochlorite (e.g., 1.8%, 5.25%, 7.5%, 8.25%), and you have to be more careful how you mix up your dilute bleach solution.

Here are some easy instructions on how to dilute the bleach that you buy (assuming it contains 1% or more sodium hypochlorite) to properly to yield a solution that is 0.5% sodium hypochlorite (or slightly higher):

  • Find the percentage of sodium hypochlorite in your bleach in the ingredient list;
  • Multiple that number by two (2);
  • Round the resulting number down to the nearest whole number;
  • Subtract one (1) from that rounded number.
  • This final number is the number of parts of water that you need to mix with one (1) part of your bleach to yield the diluted solution you need for decontaminating items.

When you use bleach on metal tools (alcohol is really a better option for treating metal items), be sure to rinse tools thoroughly with water after treating (to remove bleach residues) and then oil them.  Bleach corrodes metal and will cause metal tools to rust if not used properly.  Also use bleach carefully to prevent contact with your skin and clothing.  Bleach can cause skin irritation/burns and eat holes in your clothes, if not used properly.

Now go forth and decontaminate!

Need more information?

For more information on plant diseases and their management, check out the UW Plant Disease Diagnostics Clinic website (https://pddc.wisc.edu/) or contact PDDC staff at pddc@wisc.edu or (608) 262-2863.

 

January 2022: Plant Disease Diagnostics Clinic Services for 2022

Turquoise Microscope IconAs we start 2022, COVID-19 continues to inform how the UW Plant Disease Diagnostics Clinic (PDDC) provides services to the public.  Clinic personnel continue to try to balance providing high quality services to the public with keeping clinic staff and clients healthy and safe.  The following are current guidelines for submitting samples and tapping into the PDDC’s outreach programs and resources.  Given that the COVID-19 situation is ever evolving, there will likely be changes in these guidelines as the year progresses.  Be sure to check this document routinely for updates.

Plant Disease Diagnostics

In 2020, I started offering formal digital diagnoses, and that service will continue in 2022.  I really encourage you to submit digital photos of your plant disease problems before submitting physical samples.  Use the online form at https://pddc.wisc.edu/digital-diagnosis/.  If I can see enough of what’s going on in your photos, I will provide you a diagnosis with management recommendations and charge the $20 digital diagnosis fee.  If I cannot make a definitive diagnosis, I will not charge the fee, but I will use the photos to help me provide you with suggestions on what sort of physical sample to submit as a follow-up.  Note that if I charge the digital fee and you end up submitting a follow-up physical sample, the digital fee will be credited towards any lab fees for your physical sample.

You can submit physical samples for diagnosis either by mail or in person.  For increased safety, I suggest submitting by mail.  If you opt to drop off a sample in person, PDDC staff will not be available for an in-person consultation.  While I am committed to providing personalized service to my clients, continuing issues with COVID-19 suggest that limiting person-to-person contact is prudent.  Also note that wearing a mask is required in all UW-Madison buildings at this time.

The PDDC provides a sample drop off location in the hall outside the clinic.  Check for the large, black, wood shelving unit in the alcove just down the hall from the clinic door.  You can drop your sample(s) there.  Be sure to fill out a submission form to include with your sample.  You can find forms in the wall pocket to the left of the clinic door.  The form is also available online if you would like to fill it out ahead of time to speed up the submission process.  Please print neatly and make sure to include your complete mailing address, your phone number and your email address.  At this time, I am emailing virtually all reports and invoices.  If you do not have email however, I definitely can send out a hard copy of your report and invoice.

Presentations

I was hoping to start providing in-person PDDC presentations in 2022, but with COVID-19 cases increasing at this time, I have cancelled the few in-person talks that I already had scheduled in early 2022 and will be limiting presentations to virtual presentations (e.g., via Zoom) until further notice.  If you are interested in having me provide a presentation, click here to check out a list of topics that I routinely speak on.  Email me at pddc@wisc.edu or call me at (608) 262-2863 to discuss what talk might be best suited for your audience.

Online Resources

Via the PDDC website, I will continue to provide weekly updates of my PDDC diagnoses (the Wisconsin Disease Almanac), as well as web articles (hopefully monthly, but frequency will depend on clinic sample volume).  Also check out the revised and rebranded UW Plant Disease Facts (formerly the plant disease-related titles of the University of Wisconsin Garden Facts).  I am also working on converting some of my in-person talks [Fundamentals of Plant Diseases and The Science (and Art) of Plant Disease Diagnosis] into online training modules with voiceovers.  As these new resources become available, I will announce their availability via Twitter, Facebook (@UWPDDC), or via my clinic listserv, UWPDDCLearn (email me to subscribe to this).

Consultations

As always, if you have questions about plant diseases, feel free to contact me by phone at (608) 262-2863 or email at pddc@wisc.edu.

Stay safe everyone and all the best for 2022!

July 2021: Summer Doldrums – Wilted Tomatoes in the Garden

Tomato IconI have recently received a slew of questions about wilted tomatoes in home gardens.  Here are the top five reasons that tomatoes can wilt based on samples that I have received in my clinic over the years.

Walnut toxicity

One of the lessons that I have learned after doing plant disease diagnostics for over 20 years is that when a home gardener consults me about wilting tomatoes, the first question I should ask is, “Do you have a walnut tree near your vegetable garden?”  More times than not, the answer is “Yes” and the walnut tree is the cause of the problem.  Black walnuts produce toxins (exuded by roots and produced in leaves and fruits) that adversally affect a wide range of plants,  Tomatoes are particularly sensitive and are often die from the exposure.  Anytime that tomatoes are grown in the root zone of a walnut tree (which extends three to five times the height of the tree from the trunk), problems can arise.  Cutting down walnut trees will not solve the problem in the short term, because roots from the cut tree can continue to exude toxins for 15 to 20 years.  Often the best recourse when walnut trees are present in a landscape is to grow tomatoes in raised beds or in pots to keep tomato roots as far above walnut roots as possible.

Drought stress

In 2021, lack of rain has been a potential cause for wilting in tomatoes and virtually every other plant.  Most established plants require about one inch of water per week.  When rain is insufficient (as it has been in much of Wisconsin this year), it’s important to apply supplemental water to plants with a soaker or drip hose.  Proper watering can not only prevent wilting in tomatoes, but it can also help improve calcium uptake and reduce problems with blossom end rot.  Using an inch or two of a high quality mulch (my favorites are shredded oak bark mulch and red cedar mulch) around plants can help retain moisture and lessen wilting issues.  Mulching around tomatoes also helps reduce movement of spores (produced in bits of old tomato debris in the soil) of the fungi that cause Septoria leaf spot and early blight.

Bacterial canker

The bacterium that causes this disease (Clavibacter michiganensis subsp. michiganensis – THERE’S a mouthful) is seedborne, so gardeners typically introduce this pathogen into their gardens on contaminated tomato seeds or transplants.  Plants initially look healthy, but the bacterium eventualy colonizes, discolors and disrupts the water-conducting (vascular) tissue inside the plant, leading to wilting.  Infections can lead to long, somewhat subtle cracks in stems and ultimately less subtle open wounds (i.e., cankers) in stems near the soil line.  Another telltale symptom of the disease can be ghostly-white spots with a darker center (called bird’s-eye spots) on tomato fruits.  Removal and destruction of infected plants, and rotation away from susceptible vegetables (e.g., tomatoes and peppers) for several years in the affected area of a garden are typical management strategies.

Verticillium wilt

Many gardeners are familiar with this disease in the context of the death and destruction it brings to woody trees and shrubs.  However, Verticillium, the cause of Verticillium wilt, is an equal opportunity destroyer and can kill a wide range of herbaceous plants as well, including popular vegetables such as solanacoues crops (e.g., tomato, potato, eggplant, pepper) and vine crops (e.g., cucumber, squash, pumpkin).  This fungus is routinely found in the soil and can build up over time if susceptible vegetable crops are grown over and over again in an area where the fungus is located.  Verticillium infects through the roots and colonizes and plugs a tomato’s (or other plant’s) water-conducting tissue, leading to wilting.  Discoloration of a tomato plant’s vascular tissue is a typical symptom of this disease, but stem cracks and cankers are notRotation can be useful as a control strategy for Verticillium wilt, although it is less effective than for bacterial canker because of the wider host range for Verticillium (including many weeds).  For tomatoes, use of resistant varieties can also be useful.  To identify resistant varieties, look for a “V” after the variety name on a tomato seed packet or in the variety description in your favorite seed catalog.

Fusarium wilt

This disease is very similar to Verticillium wilt except for the fungus involved.  For Fusarium wilt, Fusarium oxysporum f. sp. lycopersici is the culprit.  Fusarium oxysporum is a large fungal species with many special forms (that’s what “f. sp.” stands for), each one adapted to infect a specific host plant or a very small range of host plants (e.g., vine crops).  Fusarium oxysporum f. sp. lycopersici is specific to tomatoes and will not infect other vegetable crops.  If you ever encounter this disease, rotation away from tomatoes in the affected area for several years should work well as a management strategy.  In addition, you can use resistant tomato varieties.  Look for one or more ‘F’s” after the variety name.

Need help or more information?

As you can imagine, figuring out the exact reason your tomatoes are wilting can be challenging, particularly if there is disease involved.  For help with proper diagnosis of tomato wilts (and other plant problems in general), contact the PDDC at pddc@wisc.edu or (608) 262-2863.

To find out more about the clinic and its activities, check out the PDDC website.  To keep up-to-date about new PDDC education materials and programs, follow the clinic on Twitter or Facebook (@UWPDDC) or contact the clinic at pddc@wisc.edu and ask to be added to the PDDC’s listserv (UWPDDCLearn).

Plant Disease Pointers – July 2021 – Sometimes the Best Medicine is No Medicine at All

Pill IconAt this time of the year, plant diseases are in full swing.  When you see diseases in your garden, a natural tendency is to want to do something to make things better.  In some instances however, ignoring the problem and doing nothing can be your best course of action.  Here are my picks for plant diseases where turning a blind eye (at least right now) will not significantly harm your plants and will make your life easier and less stressful.

Powdery mildews

On most plants, powdery mildews don’t do much damage.  Ignore them now and concentrate on good fall clean up to reduce problems with these diseases next year.  For plants such as phlox, bee balms, cucumbers and pumpkins, powdery mildews can be more problematic.  You may want to consider growing powdery mildew-resistant varieties of these plants in the future.

Tar spot

This disease of maples can be visually alarming but is another disease that typically has little impact on overall plant health.  Just be sure to collect infected leaves in the fall and burn (where allowed), bury or hot compost them to help reduce problems with the disease next year.

Cedar-apple rust

Seeing bright yellow or orange spots on your crabapple leaves?  If so, you’re likely seeing this disease.  Spraying fungicides to control cedar-apple is a total waste.  Save your time, money and energy and prune out the galls on junipers caused by the disease (and the source of the spores that infect your crabapples) or alternatively, just remove nearby junipers

Remember. . . Before choosing a control strategy, know thy plant disease.

Need more information?

For more information on plant diseases and their management, check out the UW Plant Disease Facts, available at https://pddc.wisc.edu/search-fact-sheets/ or contact the PDDC at pddc@wisc.edu or (608) 262-2863.

June 2021: Fired Up About Fire Blight

Fire IconIt‘s the time of year where I am once again getting questions about apple and crabapple trees with dead branches.  Often, in these situations, clients assume that their trees are suffering from fire blight.  This bacterial disease has received a lot of press over the years and can be a serious problem.  However, fire blight is definitely not the only reason that branches on apples and crabapples die.

There are myriad of fungal diseases that can lead to branch dieback.  In particular, fungal canker diseases can be an issue.  I often find fungi like Cytospora, Phomopsis and Sphaeropsis in dead apple or crabapple branches.  These fungi, like the fire blight bacterium, locally infect and girdle branches (thus leading to branch death), often in a somewhat random pattern in a tree.  Sphaeropsis is particularly common.  This fungus not only infects branches but can also infect fruits (causing black rot) and leaves (causing frogeye leaf spot).  More systemic fungal diseases like root and crown rot, Armillaria root disease and black root rot (dead man’s fingers) can also lead to branch dieback.  The pathogens involved in these diseases infect and disrupt root and trunk function, preventing proper water movement from roots to branches.  This lack of water leads to branch death, often over a fairly substantial portion of the tree canopy.

Environmental stresses can also lead to branch death in apples and crabapples.  Drought can lead to branch dieback symptoms similar to those caused by the systemic diseases I described above.  Cold injury can also be a contributing factor.  Growing a non-hardy apple or crabapple variety often leads to dieback issues.  Even on hardy varieties, branch dieback can occur if cold snaps occur in the spring right as or just after trees leaf out.  Lack of snow cover (which insulates soil) coupled with extremely cold winter temperatures can lead to physical injury to roots, which in turn limits water uptake, leading to branch dieback.

So, with all of these potential causes of branch dieback on apples and crabapples, how can you tell if your tree is suffering from fire blight?  The answer is, “It’s not easy!”  People often claim that fire blight leads to a branch with a shepherd’s crook (a downward bend at the branch tip).  However, after years of seeing dead and dying apple and crabapple branches, I just don’t consider this a reliable symptom for diagnosing fire blight.  To me, a shepherd’s crook just indicates that the branch didn’t get enough water and wilted.  That could be due to any of the causes I outlined above.  And conversely, I have seen cases of fire blight where branches don’t have a shepherd’s crook.  What I tend to look for as I’m attempting to diagnose fire blight is oozy material (a combination of sap and bacterial cells) that seeps from affected branch.  I also look for some indication that the infection may have started where flowers were attached.  I look for this latter indicator because trees are often inoculated with the fire blight bacterium by bees that carry the bacterium and drop it off in the flowers as they pollinate.  Even when I see these symptoms, I will only diagnose fire blight if I have evidence that the fire blight bacterium is present.  There are dipstick serological tests (these use the same technology as home pregnancy kits) that I use to confirm the presence of the fire blight bacterium.  If I don’t find evidence of the bacterium, I look for other possible causes of the branch dieback.

So, why do I really need to know if branch dieback is really due to fire blight?  It all comes down to management.  If fire blight is the cause, I recommend very aggressive pruning (roughly 12 inches below where there are obvious symptoms).  The fire blight bacterium can move rapidly down a branch under the bark, so you want to make sure to prune down far enough to remove all of the bacterium.  Fungal pathogens tend to move less rapidly, so you can get by with pruning roughly six inches below where there are obvious symptoms.  If the problem is a root disease of some kind, pruning will not resolve the problem.  Fungicide treatments to the roots may be needed in some instances, or there may be ways of reducing tree stress that slow down the progression of these types of diseases.

It all comes down to the fact that if you don’t know what the underlying problem is with your tree, it is unlikely that you will be able to fix the problem.  So, get a proper diagnosis and then tailor your management strategy to the specific problem(s) you are facing.  Without a proper diagnosis, you can spend a lot of time, effort and money, and not improve the health of your trees one bit.

Need help?

For help with proper diagnosis of plant problems, contact the PDDC at pddc@wisc.edu or (608) 262-2863.  To find out more about the clinic and its activities, check out the PDDC website.  To keep up-to-date about new PDDC education materials and programs, follow the clinic on Twitter or Facebook (@UWPDDC) or contact the clinic at pddc@wisc.edu and ask to be added to the PDDC’s listserv (UWPDDCLearn).

Plant Disease Pointers – June 2021: A Change in the Weather: Modifying Garden Microclimate to Improve Plant Health

Windy Cloud IconAs plants in your garden grow and fill in,  wet and humid conditions will arise that are perfect for diseases to develop.  Follow the tips below to prevent diseases in your garden by opening up air flow, reducing humidity and keeping leaves dry.

Leave plenty of space between new transplants

Think ahead to how big plants will be when full-size, and leave enough space so that foliage on adjacent plants won’t overlap when plants are fully grown.

Divide perennials

Plants like peonies and daylilies grow in clumps that can get quite large, and leaf disease problems tend to increase with clump size.  So, divide clumps to yield smaller plants that trap less moist air.  Dividing and replanting will also allow you to correct existing spacing problems.

Thin plants judiciously as they get big

Remove enough leaves and stems to promote good air flow, but not so many that the plants look thin and lanky.

Weed, weed, weed

Ornamentals aren’t the only plants that trap moist air; weeds can do this, too.  Removing weeds routinely can reduce the need to thin the ornamentals that you really want in your garden.

Water from below

Even though Mother Nature supplies water from above in the form of rain, when you need to water, apply water to the soil, rather than over the tops of plants.  Keep leaves dry whenever possible.

Modifying the environment in your garden can help prevent diseases like powdery mildew, shown here on phlox.
Modifying the environment in your garden can help prevent diseases like powdery mildew, shown here on phlox.

With just a little effort, you can create a microclimate in your garden that is less favorable for plant diseases and end up with more vibrant, beautiful, and healthy plants.

Need more information?

For more information on specific plant diseases and their management, check out the fact sheet section of the UW-Madison PDDC website (https://pddc.wisc.edu/fact-sheet-listing-all/).

May 2021: Rampant, Ravaging Rusts

Rust Diseases IconI really love this time of the year as plants emerge once again after their long winter naps.  I also love the fact that I now get to start looking once again for some of my favorite plant diseases.  At the top of the list at this time of the year are the rust diseases.  Rusts encompass a large group of fungal diseases, where the fungi produce brightly-colored (yellow to orange to bown) spores.  Each rust fungus has a very specific host range.  The following are a few of the rusts (one on a broad-leafed tree, one on a conifer and one on an herbaceous plant) that I have recently seen either through the clinic or in my own yard.

Crown Rust

Crown Rust Buckthorn
Crown Rust on Buckthorn

Crown rust is classic rust of grass species such as turfgrass and oats.  If you’ve ever walked through your lawn and gotten orange shoes, you’ve encountered this disease.  The fungus that causes crown rust is Puccinia coronata, which has several variants adapted to infect specific grass hostsThe disease and pathogen names come from the look of the resting spores of the fungus.  These spores have spikes that give them the appearance of a crown.  At this time of the year, I don’t see crown rust on grass or oats (that comes later in the growing season), but I see it on a second host (called the alternate host) of the fungus, buckthorn.  Buckthorn is actually required by the crown rust fungus to complete its life cycle.  Puccinia coronata causes yellow-orange, powdery patches on the buckthorn leaves and green stems, and I actually use crown rust as an ID feature for buckthorn.  If I see seedlings that I think are buckthorn, but I’m not quite sure, I look for the characteristic orange patches of crown rust to confirm.  And if you need another reason get rid of buckthorn, in addition to this plant being incredibly invasive, here it is.  If you remove buckthorn, you will prevent the crown rust fungus from completing its life cycle and reduce the severity of the disease on turf and oats.

Weir’s Cushion Rust

Weirs Cushion Rust on Spruce
Weirs Cushion Rust on Spruce

This is rust disease of spruce that I see infrequently, but I just received a sample of it this past week in the clinic.  I was over the moon!  (Yes, I know I’m weird and lead a very sheltered life.)  The fungus that causes this disease is Ceropsora weirii (formerly Chrysomyxa weirii), a single-host rust fungus that only requires spruce to complete its life cycle.  Infection leads to yellow banding on one-year-old needles.  Within these bands in the spring (typically April or May), fruiting bodies (i.e., reproductive structures) of Ceropsora weirii form yielding orangish spores that blow to newly emerging needles where the fungus infects.  The fruiting bodies are easily visible with a hand lens or even with the naked eye.  Eventually the infected3 needles brown and drop off the tree.  Management of Weir’s cushion rust can be a challenge and typically involves use of fungicides to protect newly emerging needles.

Mayapple Rust

Mayapple Rust
Mayapple Rust

I’d like to give a shout-out to Brenda Dahlfors, Master Gardener Program Coordinator with University of Illinois Extension for sending me photos of this cool rust.  The fungus involved here is another species of Puccinia, Puccinia podophylli.  This is another single-host rust, where the fungus that only infects mayapples.  The disease is most visible in the spring when bright orange, powdery patches develop on the undersides of leaves.  On the upper leaf surfaces above these patches, you will see yellow spots/discolored areas.  The orange spores produced by the pathogen reinfect mayapple plants, causing additional disease.  The bright orange patches tend to fade to a duller brown as they age and convert to producing brown overwintering spores.  These overwintering spores germinate in the spring to produce yet another type of spore that causes the initial infections in the spring.  Careful removal of infected leaves and plant debris (burn, bury or hot compost this material) combined with fungicide sprays where appropriate is the typical management strategy for this disease.

Need additional information?

These are just a few of the cool rust diseases that you may encounter as you are out and about.  Watch for these and other rusts, and enjoy them when you find them.  There are the most visually colorful and attractive diseases that I see.  For additional information on the PDDC and its activities, check out the PDDC website.  To learn about new PDDC education materials and programs, follow the clinic on Twitter or Facebook (@UWPDDC) or contact the clinic at pddc@wisc.edu and ask to be added to the PDDC’s listserv (UWPDDCLearn).

Plant Disease Pointers – May 2021: Smart Shopping: Dodging Disease When Purchasing Plants

Potted Plant IconMay is a prime time to visit your local greenhouse, nursery or garden center to buy annuals, perennials and vegetables for your home garden.  Unfortunately, these plants can be carriers of plant disease-causing organisms.  Here are some pointers on what to look for when buying plants.

Select plants that are vigorously growing, but aren’t overly leggy

Stunted plants often have diseases (e.g., root rots or viral diseases).  Leggy plants may be healthy, but often have growth that is wimpy and easily injured.  Injured tissue can provide entry points for plant pathogens.

Avoid plants with brown leaf spots

Dead spots on leaves can indicate fungal or bacterial infections.  The pathogens involved continue to reproduce in these areas and can spread on the plant, and potentially to other plants.

Avoid plants with odd leaf coloring

Some plants have variegated foliage.  That’s normal.  However, if you see plants with unexpected blotchy light and dark-colored leaves, yellow lines or yellow ring patterns, avoid these.  They may be infected with a virus.

Avoid plants with fuzzy growth on the leaves

Such growth typically indicates a fungal or water mold infection.  For example, white growth on upper and lower leaf surfaces can indicate a powdery mildew problem; white, gray or purplish growth on the undersides of leaves is typical of a downy mildew

Choose plants with healthy, white roots

Examine plant roots whenever possible.  If roots are brown or otherwise discolored, root rots or some sort of physical root injury (e.g., heat injury) may be an issue.

Avoid plants with blotchy leaf color, an indication of a viral infection.
Avoid plants with blotchy leaf color, an indication of a viral infection.

With just a little care, you can buy healthy, pathogen-free plants that will provide months, if not years, of gardening enjoyment.

Need more information?

For more information on plant diseases and their management, check out the fact sheet section of the UW-Madison PDDC website (https://pddc.wisc.edu/fact-sheet-listing-all/).

April 2021: Tomato in the Basement, Canary in the Coalmine

Canary IconI have the coolest job on the planet.  Everyday, I get to help people with their plant disease problems.  This may entail helping someone learn how to grow healthy, nutritious vegetables to feed their family or assisting a grieving family select the just the right tree to plant to serve as a lasting memorial for a recently lost loved one.  On occasion, I get to help Wisconsin farmers avoid severe economic losses due to plant diseases or help prevent the introduction of federally regulated plant pathogens that potentially can have negative impacts nationwide  This month, I’d like to share with you a diagnostic case where a proper diagnosis had the potential to save someone’s life.

I recently received photos from a home gardener who was growing tomato transplants indoors.  She was concerned that her plants were not doing well and losing leaves.  Her photos showed plants with leaves that were cupping downward and showed twisted petioles and other growth distortions.  I was immediately suspicious that the plants had been exposed to ethylene.  Ethylene is a gas that is a plant growth hormone that can be very beneficial for proper plant development; in particular, ethylene is important in fruit ripening.  But in other situations, when plants are exposed at the wrong time or at too high of a concentration, ethylene can have negative effects, in fact exactly the sort of symptoms I was seeing in my client’s photos:  distorted plant growth and premature leaf loss.

omatoes suffering from ethylene exposure. Photo courtesy of Kristine Meixensperger.
Tomatoes suffering from ethylene exposure. Photo courtesy of Kristine Meixensperger.

After an exchange of several emails, the puzzle pieces started to fall into place.  My client had been growing her tomatoes in the basement (not uncommon for many gardeners) next to the boiler that provided heat for her home.  As the weather warmed up, she moved the plants to her garage where she parks her car and where she has a full kitchen.  She had been cooking in this kitchen recently to provide a bit of additional warmth for her plants.  Both her boiler and stove burn propane.

At this point, alarm bells were going off.  If propane burners malfunction and don’t burn propane completely, one of the breakdown products of this incomplete combustion is ethylene.  You can also find ethylene in exhaust fumes from motor vehicles, in the smoke produced by wood-burning stoves and as a contaminant in natural gas.  I suggested to my client that she should have her boiler and stove checked immediately for problems.  One or both of these (and possibly also fumes from her car) were likely the source of ethylene that was causing problems for her tomatoes.  She emailed back to tell me that what I had told her made perfect sense as her tomatoes nearer the boiler had more severe symptoms than those farther away.  Another sentence from this email became the inspiration for the title of this article:  “So the tomatoes plants in the basement acted like a canary in a coalmine.”

I told her that she was spot on with her analogy, and at that point, I gave potentially even more serious news.  In addition to producing ethylene, malfunctioning propane burners (and other types of heating systems) also can produce carbon monoxide, a potentially deadly gas.  According to the CDC, approximately 50,000 people visit hospitals with carbon monoxide poisoning each year and at least 430 of these people die from this poisoning.  Luckily, my client had a carbon monoxide detector near the boiler and it hadn’t gone off.  But, the unit was old, and my client indicated that our conversation had made her realize that she needed to replace that unit.

What if she hadn’t had a carbon monoxide detector?  Then, those distorted tomatoes would have been her first hint that a potentially deadly carbon monoxide situation was developing.  Similarly, if she had had distorted tomatoes growing near a natural gas-fueled furnace, that could have indicated a natural gas leak, another potentially lethal situation.

Ah, the power of a lowly vegetable and a bit of knowledge about how they grow!

For additional information on the PDDC and its activities

Check out the PDDC website.  To learn about new PDDC education materials and programs, follow the clinic on Twitter or Facebook (@UWPDDC) or contact the clinic at pddc@wisc.edu and ask to be added to the PDDC’s listserv (UWPDDCLearn).

Plant Disease Pointers – April 2021: Water, Water, Everywhere, but Never, Ever on the Leaves

Thundercloud with Rain IconApril conjures up visions of spring rain showers, eventually leading to May flowers.  While Mother Nature waters plants using an overhead sprinkling system (i.e., rain), from plant disease standpoint, this type of watering is less than optimal.

What’s the problem with watering from above?  

Overhead watering wets leaves creating what plant pathologists call a “leaf wetness period,” a time when a thin layer of water coats the leaf.  This layer of water is exactly what most plant diseases-causing fungi require for their spores to germinate and infect.  The longer the leaf wetness period, the more likely leaf diseases will be a problem.

Wet Leaves. Photo by Diana Alfuth
Wet Leaves. Photo by Diana Alfuth

What do I do to prevent watering issues? 

You can’t prevent rain, but during dry periods when you need to water, don’t simulate rain by using a sprinkler.  Instead, use a soaker or drip hose that directs water into the soil rather than onto leaves.  Water at low pressure so that any sprays from these hoses are minimized.  When it does rain, promote rapid drying of leaves by spacing plants as far apart as possible in new plantings, and thinning existing beds to increase spacing.  Wider plant spacing increases air flow, promotes more rapid drying of leaves (when leaves do get wet), and shortens leaf wetness periods, making it more difficult for plant pathogens to get a foothold.  Don’t overwater either.  Excessive soil moisture eventually increases humidity around plants, which slows leaf drying and lengthens leaf wetness periods.

By taking just a little extra care in how you water, you can have a big impact on the health of the plants in your garden.

Need more information?

For more information on leaf diseases, check out the fact sheet section of the UW-Madison PDDC website (https://pddc.wisc.edu/fact-sheet-listing-all/).

Photo courtesy of Diana Alfuth.