Category Archives: Disease – Fruit Crop

Raspberry Anthracnose

Extension Logo

UW Plant Disease Facts

 

Authors:   Chen Zhang*, UW-Madison Plant Pathology
Last Revised:   03/01/2024
D-number:   D0091
 
Anthracnose on raspberry canes. Note the sunken, gray centers and raised, purple edges. (Photo courtesy of Patricia McManus)
Anthracnose on raspberry canes. Note the sunken, gray centers and raised, purple edges. (Photo courtesy of Patricia McManus)

What is raspberry anthracnose? 

Raspberry anthracnose is a common disease that causes significant reductions of yield and fruit quality on raspberries in the United States.  Black and purple raspberries (oftentimes misidentified as blackberries) are particularly susceptible to anthracnose, while red raspberries are less susceptible to the disease.  True blackberries are also occasionally affected by anthracnose.

What does raspberry anthracnose look like? 

Anthracnose can affect any part of a raspberry plant; however, canes are most commonly affected.  Watch for scattered, purple, roundish spots (up to ⅜ inch in diameter) that are characteristic of the disease.  Over time, the spots develop ash-colored, sunken centers and raised purple margins.  When anthracnose is severe and develops early in the growing season, these sunken spots can merge and girdle raspberry canes, resulting in cane death.  When anthracnose develops later in the season spots may not develop sunken centers, but will overlap and merge.  If a large enough portion of a cane is affected, the bark may split.  This symptom is called “gray bark”.  Canes severely affected by anthracnose are more prone to winter injury.  On leaves, anthracnose symptoms typically appear in early to mid-summer as irregularly-shaped, yellow spots that are approximately 1/16 inch in diameter.  These spots enlarge and develop gray centers with reddish-purple borders.  Over time, the gray centers may fall out, giving the spots a “shot-hole” effect.

Where does raspberry anthracnose come from? 

Anthracnose is caused by the fungus Elsinoe necator.  The fungus can be introduced into a raspberry patch on infected plants or by spores that are blown from other raspberry patches or from wild raspberry relatives (such as brambles).  Once established in a raspberry patch, E. necator can overwinter on diseased raspberry canes.  In the spring, spores of the fungus spread to new canes (which are more susceptible to infection due to their lack of a hard bark) and leaves by wind, rain splash, and insects.  Infections are more likely to occur during long periods of wet weather.  Additional spores produced as a result of these early season infections can lead to additional infections late in the summer (e.g., in late August and September).

How do I save a plant with raspberry anthracnose? 

Anthracnose is difficult to manage once symptoms have developed.  Pruning symptomatic canes as they appear may provide some benefit, but only when disease levels are relatively low.  Prune four to six inches below where symptoms have appeared and decontaminate pruning tools between cuts by treating them for at least 30 seconds with 10% bleach or preferably (because of its less corrosive properties) 70% alcohol.  Rubbing alcohol and many spray disinfectants typically contain approximately 70% alcohol and are easy to use.  Canes can be burned (where allowed by local ordinance) or buried.  Fungicides are not effective for controlling anthracnose once infections have occurred and should be only be used preventatively (see below).

How do I avoid problems with raspberry anthracnose in the future?  

When establishing your raspberry patch, choose a sunny, open area with a well-drained soil.  Remove plants related to raspberries (e.g., brambles) from the vicinity of your patch as these plants can potentially be a source of the anthracnose fungus.  Purchase disease-free raspberry plants from a reputable nursery or other raspberry supplier, and space these plants in rows that are 12 to 18 inches apart to promote good air flow, and rapid drying of plants.  Fertilize your raspberries appropriately [see UW Bulletin A1610, Growing Raspberries in Wisconsin (available at https://learningstore.extension.wisc.edu/) for details], but DO NOT overfertilize with nitrogen.  Heavy nitrogen fertilization will stimulate excessive growth of tender canes that are more susceptible to infection by the anthracnose fungus.  When watering, DO NOT use a sprinkler; instead use a soaker or drip hose that applies water to the soil rather than to onto leaves and canes.  Keep weeds under control so that they do not block air movement.

Once your raspberry patch is established, prune raspberries routinely (see UW Bulletin A1610 for details) to remove diseased and winter-injured canes as well as to promote better air flow.  If anthracnose has been a chronic problem in your raspberry patch, consider using a preventative fungicide treatment for control.  Use a single application of liquid lime sulfur (1⅓ cups per gallon of water) when leaf buds show ¼ to ½ inch of green tissue.  Be sure to read and follow all label instructions to ensure that you use the fungicide in the safest and most effective manner possible.

For more information on raspberry anthracnose: 

Contact the University of Wisconsin Plant Disease Diagnostics Clinic (PDDC) at (608) 262-2863 or pddc@wisc.edu.


This Fact Sheet is also available in PDF format:

*Completed as partial fulfillment of the requirements for Plant Pathology 558 at the University of Wisconsin Madison.

© 2014-2024 the Board of Regents of the University of Wisconsin System doing business as University of Wisconsin-Madison Division of Extension.

An EEO/Affirmative Action employer, University of Wisconsin-Madison Division of Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

References to pesticide products in this publication are for your convenience and are not an endorsement or criticism of one product over similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.

Thanks to Diana Alfuth, Erica Arcibal, Ken Frost, Kristin Krokowski, Patricia McManus, Anna Seidl, and Pauline Zhu for reviewing this document.

A complete inventory of UW Plant Disease Facts is available at the University of Wisconsin-Madison Plant Disease Diagnostics Clinic website: https://pddc.wisc.edu.

Submit additional lawn, landscape, and gardening questions at https://hort.extension.wisc.edu/ask-a-gardening-question/.

Plum Pox – Pest Alert

Extension Logo

UW Plant Disease Facts

 

Pest Alert
Authors:   Emma Nelson and Leslie Holland, UW-Madison Department of Plant Pathology
Last Revised:   03/01/2024
D-number:   D0082

What is plum pox? 

Plum pox, also known as “sharka,” is one of the most devastating diseases of stone fruits (plums, peaches, nectarines, and apricots) worldwide.  This viral disease was first discovered on plums in Bulgaria in 1915 and subsequently has been observed in many parts of the world.  There are several variants of plum pox, but only one has been found in the United States.  This variant was first found in peach orchards in Pennsylvania in 1999 (the first report of plum pox in North America).  In 2006, the same variant was identified in Michigan and New York.  Primary hosts of the U.S. plum pox variant are peach, plum, and ornamental Prunus species.  Cherries and almonds are not considered natural hosts of this variant, but they can be artificially infected.  Other plum pox hosts include garden plants (e.g., tomatoes, peas, petunias, zinnias) and weeds (e.g., white clover, lamb’s quarters).  While plum pox does not kill stone fruit trees, it causes serious crop losses by making fruit deformed, discolored, tasteless, and unmarketable.  In 2019, after intense quarantine and destruction of infected trees and orchards, the United States Department of Agriculture declared that plum pox had been eradicated from the United States.

Plum pox symptoms on immature plum fruits (left), and a plum leaf (right). (Photographs courtesy of R. Scorza and obtained from West Virginia University at http://www.caf.wvu.edu/kearneysville/wvufarm1.html)
Plum pox symptoms on immature plum fruits (left), and a plum leaf (right). (Photographs courtesy of R. Scorza and obtained from West Virginia University at http://www.caf.wvu.edu/kearneysville/wvufarm1.html)

What does plum pox look like?  

Plum pox symptoms vary widely depending on host plant, plant age, plant nutrient status, environmental conditions, plum pox variant, and timing of infection.  Some infected plants do not exhibit any visible symptoms or may not develop symptoms until years after infection, making plum pox difficult to detect.  Additionally, symptoms may not be visible throughout an entire plant but limited to only a portion of the plant.  Once a plant starts to show symptoms however, it will continue to do so in subsequent years.  Of the stone fruits, plums are generally most severely affected by plum pox and show the most obvious symptoms.  Branches on infected trees may develop spots.  Leaves may develop yellow-green spots or blotches and mild, light-green discoloration near leaf veins (see photo above) that can be difficult to distinguish from other causes (e.g., nutrient deficiencies).  On peach trees, leaf crinkling, puckering, and curling may also occur.  Fruits may develop yellow rings or line patterns and become brown or necrotic (see photo above).  As fruits ripen, symptoms fade, but fruits drop from the tree prematurely.  Seeds may have white rings or line patterns.

Where does plum pox come from?  

Plum Pox is caused by the Plum pox virus (PPV).  PPV-D (one of six PPV variants/strains) is the only strain that has been detected in the United States.   PPV can be moved long distances via infected nursery stock such as infected trees or budwood used for grafting.  Once introduced into an orchard, the virus is spread short distances by aphids.  Aphid transmission occurs more frequently in spring and autumn.  PPV can overwinter in various parts of a tree, including the roots.

How do I save a tree with plum pox?  

Once a tree has been infected with PPV, it cannot be cured.  Timely and complete eradication of infected trees and even entire orchards is the only effective way to prevent further spread.  Diseased trees (including stumps) should be removed and destroyed (i.e., burned and/or buried).  Trees surrounding a problematic area should be monitored frequently for symptom development.  Other potential host plants (see above) should also be monitored for symptoms of disease.  If you see what you believe to be plum pox symptoms, contact your local plant disease diagnostic clinic immediately (see http://npdn.org/ for the lab nearest you).  In Wisconsin, contact the UW-Madison Plant Disease Diagnostics Clinic (PDDC) at (608) 262-283 or pddc@wisc.edu.  PPV is a federally regulated pathogen and if detected, infected plants must be destroyed to prevent further spread.  For more information on the federal regulation of PPV, see https://www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-programs/pests-and-diseases/

How do I avoid problems with plum pox in the future?  

After 20 years and elimination of over 1,500 acres of fruit trees, PPV has been eradicated in the United States.  Preventing reintroduction of the PPV in the United States is critical.  To prevent reintroduction of PPV, only use nursery stock that is certified virus-free.  Also consider planting resistant varieties, but keep in mind that existing resistant varieties can still carry the virus and be asymptomatic.  Additional control strategies for plum pox include managing aphids that can transmit PPV, following quarantine regulations, and routinely scouting and surveying orchards for plum pox and PPV.  Ongoing monitoring for plum pox in stone-fruit-producing states and regulating imported trees will help ensure that the United States remains free of PPV.

For more information on plum pox: 

Contact the University of Wisconsin Plant Disease Diagnostics Clinic (PDDC) at (608) 262-2863 or pddc@wisc.edu.


This Fact Sheet is also available in PDF format:

© 2021-2024 the Board of Regents of the University of Wisconsin System doing business as University of Wisconsin-Madison Division of Extension.

An EEO/Affirmative Action employer, University of Wisconsin-Madison Division of Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

References to pesticide products in this publication are for your convenience and are not an endorsement or criticism of one product over similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.

Thanks to Patty Meister, Josie Russo and Carol Shirk for reviewing this document.

A complete inventory of UW Plant Disease Facts is available at the University of Wisconsin-Madison Plant Disease Diagnostics Clinic website: https://pddc.wisc.edu.

Submit additional lawn, landscape, and gardening questions at https://hort.extension.wisc.edu/ask-a-gardening-question/.

Nectria Canker

Extension Logo

UW Plant Disease Facts

 

Authors:   Ann Joy and Brian Hudelson, UW-Madison Plant Pathology
Last Revised:   03/01/2024
D-number:   D0074

What is Nectria canker? 

Nectria canker is a common and potentially lethal disease that affects many species of trees and shrubs.  This disease can cause significant damage on newly planted, as well as established, trees and shrubs that are under stress.

Nectria canker on a honey locust tree. The site of infection was a pruning wound.
Nectria canker on a honey locust tree. The site of infection was a pruning wound.

What does Nectria canker look like? 

Nectria canker is characterized by the formation of sunken areas (cankers) that form on twigs, branches, and trunks.  Cankers can form at leaf scars and wherever injuries occur.  Injuries can be caused by pruning (particularly improper pruning), frost, hail, cracking from heavy snow or ice, sunscald, insects, or animals.  Cankers appear first as slightly sunken areas on the bark, but can grow for years, becoming target-shaped or elongated.  Small branches girdled by cankers can wilt suddenly, fail to leaf out, and die.

Where does Nectria canker come from? 

Nectria canker is caused by two fungi, Nectria cinnabarina and Nectria galligena.  These fungi survive in the margins of cankers where they produce numerous fruiting bodies (reproductive structures).  Fruiting bodies can be cream, coral, orange, or red, and eventually darken to brown or black with age.  Spores are dispersed by wind, water, and pruning tools.  Cankers expand slowly, usually when the host is dormant or under stress.  Infected plants may hold the fungus in check by producing wound-closing (callus) tissue around the infected area.

How do I save a tree with Nectria canker? 

There is no cure for Nectria canker.  Remove smaller branch cankers by pruning six to eight inches below the canker.  Disinfect pruning tools after each cut by treating them for at least 30 seconds with 10% bleach solution or (preferably due to its less corrosive properties) 70% alcohol (e.g., rubbing alcohol, certain spray disinfectants).  If you use bleach, be sure to thoroughly rinse and oil your tools after pruning to prevent rusting.  Trees with trunk cankers may live many years with the disease.  Healthy trees are better able to slow the development of Nectria canker, so make sure that trees are watered and fertilized properly.

How do I avoid problems with Nectria canker in the future? 

Choose plants that are well-adapted to your local climate.  Avoid any stresses to your trees and shrubs.  Prune trees and shrubs properly.  See UW-Garden Facts XHT1014, Pruning Deciduous Trees, and XHT1015, Pruning Deciduous Shrubs), and avoid injury to root and trunks from lawnmowers.  Remove grass from around the base of trees and shrubs, mulch properly, and water as needed to avoid drought stress.

For more information on Nectria canker: 

Contact the University of Wisconsin Plant Disease Diagnostics Clinic (PDDC) at (608) 262-2863 or pddc@wisc.edu.


This Fact Sheet is also available in PDF format:

© 2002-2024 the Board of Regents of the University of Wisconsin System doing business as University of Wisconsin-Madison Division of Extension.

An EEO/Affirmative Action employer, University of Wisconsin-Madison Division of Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

Thanks to Lis Friemoth, Laura Jull, and Bob Tomesh for reviewing this document.

A complete inventory of UW Plant Disease Facts is available at the University of Wisconsin-Madison Plant Disease Diagnostics Clinic website: https://pddc.wisc.edu.

Submit additional lawn, landscape, and gardening questions at https://hort.extension.wisc.edu/ask-a-gardening-question/.

Herbicide Damage

Extension Logo

UW Plant Disease Facts

 

Authors:   Brian Hudelson, UW-Madison Plant Pathology
Last Revised:   03/01/2024
D-number:   D0060

What is herbicide damage? 

Herbicide damage is any adverse, undesired effect on a plant that is caused by exposure of that plant to a pesticide designed for weed control (i.e., an herbicide).  Any plant can be subject to this problem.

Squash leaf distorted due to exposure to a common lawn herbicide.
Squash leaf distorted due to exposure to a common lawn herbicide.

What does herbicide damage look like? 

Symptoms of herbicide damage vary depending upon the plant affected and the herbicide used.  Common symptoms include stems that are flattened, or that twist or corkscrew.  Leaves may have abnormal shapes, sizes or textures.  In addition, leaves or leaf veins may yellow or redden.  In severe cases, plants may brown and die.  Some plants, such as tomatoes and grapes, are particularly susceptible to herbicide damage and can be used as indicators of unwanted herbicide exposure.

How does herbicide damage occur? 

Herbicide damage results when an herbicide is misapplied.  Herbicides for control of broadleaf weeds are occasionally applied with fertilizers as part of a lawn care program.  If these products are applied too close to ornamentals or vegetables, or are applied when there is too much wind, then the herbicide can drift (move) from the area of application into a non-treated area.  Often, drifting herbicides are difficult to detect by eye because they are extremely fine mists.  They can better be detected by smell.  Some herbicides readily produce vapors that can begin to drift several hours after application.

How do I save a plant that has been damaged by herbicides?  

There is nothing you can do after plants have been exposed.  However, most plants accidentally exposed to broadleaf herbicides applied with lawn fertilizers do not receive a high enough dose to kill them.  Young growth exposed to the herbicide will be distorted and discolored, but subsequent growth will be normal.

How do I avoid problems with herbicide damage in the future?  

When using a lawn herbicide, follow the application directions exactly.  DO NOT apply the product too close to, or in a manner that will cause exposure to, non-target ornamentals or vegetables.  To avoid drift, apply the herbicide when there is as little wind as possible (< 5 mph).  Apply the herbicide at low pressure to minimize production of fine mists.  Finally, use amine forms rather than ester forms of herbicides as amine forms are less likely to produce vapors.

For more information on herbicide damage: 

Contact the University of Wisconsin Plant Disease Diagnostics Clinic (PDDC) at (608) 262-2863 or pddc@wisc.edu.


This Fact Sheet is also available in PDF format:

© 1999-2024 the Board of Regents of the University of Wisconsin System doing business as University of Wisconsin-Madison Division of Extension.

An EEO/Affirmative Action employer, University of Wisconsin-Madison Division of Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

References to pesticide products in this publication are for your convenience and are not an endorsement or criticism of one product over similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.

Thanks to Sharon Morrisey, John Stier, Ann Wied and Chris Williamson for reviewing this document.

A complete inventory of UW Plant Disease Facts is available at the University of Wisconsin-Madison Plant Disease Diagnostics Clinic website: https://pddc.wisc.edu.

Submit additional lawn, landscape, and gardening questions at https://hort.extension.wisc.edu/ask-a-gardening-question/.

Guignardia Leaf Spot

Extension Logo

UW Plant Disease Facts

 

Authors:   Brian Hudelson, UW-Madison Plant Pathology
Last Revised:   03/01/2024
D-number:   D0057

What is Guignardia leaf spot? 

Guignardia leaf spot is a common fungal leaf disease that affects vining plants such as Boston ivy and Virginia-creeper.  The fungus that causes Guignardia leaf spot also causes a leaf spot and fruit rot of grape called black rot.

Roughly circular, red-bordered spots on Boston ivy typical of Guignardia leaf spot.
Roughly circular, red-bordered spots on Boston ivy typical of Guignardia leaf spot.

What does Guignardia leaf spot look like? 

Symptoms of Guignardia leaf spot include roughly circular, or sometimes angular (i.e., straight-edged), ¼ to ½ inch diameter dead spots on affected leaves.  Spots often have a purple-red border, and the centers may eventually fall out.  Young leaves are more susceptible to infection than mature leaves.  If infections occur before leaves have fully expanded, leaves can become puckered and distorted.  Within the spots, a diffuse ring of black dots (reproductive structures of the fungus) is typically visible.

Where does Guignardia leaf spot come from? 

Guignardia leaf spot is caused by the fungus Phyllosticta ampelicida (formerly Guignardia bidwellii), which survives in leaf litter.  Spores of the fungus are produced under cool, moist conditions and can be dispersed by wind or splashing water.

How do I save a plant with Guignardia leaf spot? 

DO NOT panic!  Guignardia leaf spot is most often a cosmetic disease, making an affected plant look a little ragged, but not killing the plant.  Only occasionally will the disease be more severe, resulting in defoliation.

How do I avoid problems with Guignardia leaf spot in the future?  

Remove and burn (where allowed by local ordinance), bury or hot compost fallen, infected leaves.  Thin plants to increase airflow and promote rapid drying of foliage.  This drier environment is less favorable for disease developments.  Water plants at the base using a soaker or drip hose to minimize wetting of leaves and reduce the movement of spores.  If a plant has been severely defoliated by Guignardia leaf spot for several years, preventative fungicide treatments may be necessary.  Make an initial fungicide application as leaves first begin to emerge.  If the weather is cool and wet, make additional applications at seven to 14 day intervals until hotter, drier weather develops or until leaves are fully expanded and mature.  Chlorothalonil, copper, mancozeb and thiophanate-methyl are labeled for Guignardia leaf spot control.  DO NOT use the same active ingredient for all treatments (particularly if you are using thiophanate-methyl).  Instead, alternate the use of at least two active ingredients.  This strategy will help minimize problems with fungicide-resistant strains of Phyllosticta ampelicida.  Be sure to read and follow all label instructions of the fungicide(s) that you select to ensure that you use the product(s) in the safest and most effective manner possible.

For more information on Guignardia leaf spot: 

Contact the University of Wisconsin Plant Disease Diagnostics Clinic (PDDC) at (608) 262-2863 or pddc@wisc.edu.


This Fact Sheet is also available in PDF format:

© 2003-2024 the Board of Regents of the University of Wisconsin System doing business as University of Wisconsin-Madison Division of Extension.

An EEO/Affirmative Action employer, University of Wisconsin-Madison Division of Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

References to pesticide products in this publication are for your convenience and are not an endorsement or criticism of one product over similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.

Thanks to Lisa Johnson, Ann Joy and Patti Nagai for reviewing this document.

A complete inventory of UW Plant Disease Facts is available at the University of Wisconsin-Madison Plant Disease Diagnostics Clinic website: https://pddc.wisc.edu.

Submit additional lawn, landscape, and gardening questions at https://hort.extension.wisc.edu/ask-a-gardening-question/.

Gray Mold (Botrytis Blight)

Extension Logo

UW Plant Disease Facts

 

Authors:   Jeffory Schraufnagel*, Milwaukee Area Technical College, Brian Hudelson, UW-Madison Plant Pathology
Last Revised:   03/01/2024
D-number:   D0056

What is gray mold? 

Gray mold (or Botrytis blight) is a common and often serious fungal disease that can affect plants of all kinds.  Gray mold is a particularly serious problem on flowering plants and plants grown in greenhouses.

Severe gray mold can prevent rose blossoms from developing properly.
Severe gray mold can prevent rose blossoms from developing properly.

What does gray mold look like? 

Gray mold causes brown spots on flower petals that enlarge, killing the petals and eventually the rest of the flower.  Early infections may prevent flowers from opening.  On plants such as tulips, crocus, and daffodils, gray mold may spread from flowers into the bulbs leading to bulb decay.  On leaves, Botrytis causes irregularly-shaped necrotic (dead) areas that may have a bull’s-eye pattern.  Botrytis can also cause stem cankers (localized sunken areas) that may eventually enlarge to girdle a stem.

Where does gray mold come from? 

Gray mold is caused by the fungus Botrytis cinerea, which survives on dead plant tissue as dark brown to black, multi-celled structures called sclerotia, and as thick, dark-walled, single-celled spores called chlamydospores.  Botrytis produces large numbers of dusty, gray reproductive spores that are spread by wind or splashing water.  These spores rapidly die when dried.  Botrytis most readily infects delicate tissues such as flower petals.  In order to infect tougher tissues such as healthy leaves, Botrytis spores require an external food source such as nutrients leaking from wounds or dead/dying tissues such as withered flower petals.

How do I save a plant with gray mold? 

Promptly remove diseased leaves and flowers.  Prune diseased branches four to six inches below the infection leaving a clean cut.  Decontaminate pruning tools between cuts by treating them for at least 30 seconds with a 10% bleach solution or (preferably due to its less corrosive properties) 70% alcohol (e.g., rubbing alcohol or certain spray disinfectants).  If you use bleach, thoroughly rinse and oil your tools after pruning to prevent rusting.

How do I avoid problems with gray mold in the future? 

Remove dead or dying tissue from plants and the soil surface.  Avoid wounding plants mechanically, or chemically by overfertilization or misuse of pesticide sprays.  Reduce humidity around plants and germinate seedlings under warm, relatively dry conditions.  Fungicides such as chlorothalonil and mancozeb can be used to prevent infections.  Be sure to read and follow all label instructions of the fungicide that you select to ensure that you use the fungicide in the safest and most effective manner possible.

For more information on gray mold: 

Contact the University of Wisconsin Plant Disease Diagnostics Clinic (PDDC) at (608) 262-2863 or pddc@wisc.edu.


This Fact Sheet is also available in PDF format:

*Completed as partial fulfillment of the requirements for an associate degree in Horticulture at the Milwaukee Area Technical College.

© 2003-2024 the Board of Regents of the University of Wisconsin System doing business as University of Wisconsin-Madison Division of Extension.

An EEO/Affirmative Action employer, University of Wisconsin-Madison Division of Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

References to pesticide products in this publication are for your convenience and are not an endorsement or criticism of one product over similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.

A complete inventory of UW Plant Disease Facts is available at the University of Wisconsin-Madison Plant Disease Diagnostics Clinic website: https://pddc.wisc.edu.

Submit additional lawn, landscape, and gardening questions at https://hort.extension.wisc.edu/ask-a-gardening-question/.

Foliar Nematodes

Extension Logo

UW Plant Disease Facts

 

Authors:   Megan Meyers* and Brian Hudelson, UW-Madison Plant Pathology
Last Revised:   03/01/2024
D-number:   D0053
 
Angular dead areas on Brunnera leaves typical of infections by foliar nematodes. (Photo courtesy of Monica Lewandowski, The Ohio State University Plant Pathology)
Angular dead areas on Brunnera leaves typical of infections by foliar nematodes. (Photo courtesy of Monica Lewandowski, The Ohio State University Plant Pathology)

What are foliar nematodes? 

Foliar nematodes are microscopic worm-like organisms in the genus Aphelenchoides.  They live in and on the leaves (and other above-ground plants parts) of over 450 plant species in more than 75 plant families.  They are commonly found on hostas, but can affect other herbaceous ornamentals (e.g., African violet, anemone, begonia, chrysanthemum, fern, orchid, veronica) and woody ornamentals (e.g., azalea, elm, privet), as well as fruit crops (e.g., sour cherry, strawberry) and vegetable crops (e.g., broccoli, celery, lettuce, onion, pinto bean, potato, squash, tomato).  Damage from foliar nematode is usually cosmetic and non-lethal making ornamental plants less attractive and less saleable.  In severe cases and on particularly susceptible hosts (e.g., strawberry), foliar nematodes can cause extensive leaf injury and defoliation, and can interfere with and limit flowering.

What does foliar nematode damage look like? 

Unlike most other nematodes, which cause root damage, foliar nematodes cause damage to above-ground plant parts, especially leaves.  In young plants, foliar nematodes can cause new growth to curl, twist, and stunt.  In more mature plants, foliar nematodes cause small, discolored, angular (i.e., straight-edged) blotches on leaves.  The blotchy areas are typically bordered by veins.  Blotches eventually turn brown and dry, and may fall away, giving the leaf a “shot-holed” appearance.  Angular blotches often are not apparent until late in the growing season (e.g., August).

Where do foliar nematodes come from? 

Foliar nematodes are typically first introduced into a garden on infected/infested plants brought from another location.  Foliar nematodes can then be spread from infected/infested plants to healthy plants by water splash from rain or overhead watering.  Infections most often occur during periods of high humidity or when films of water form on leaves allowing for nematode movement.  Foliar nematodes can also be spread when infected/infested plants are vegetatively propagated (i.e., when cuttings are taken from infested plants).  Foliar nematodes can survive in dry leaves, dormant buds, and in soil, but not in plant roots.  They can survive in unfavorable (e.g., dry or freezing) conditions and quickly become active when moisture becomes available.

Striped dead areas on hosta leaves typical of infections by foliar nematodes.
Striped dead areas on hosta leaves typical of infections by foliar nematodes.

How do I save a plant with foliar nematodes? 

Eliminating foliar nematodes is virtually impossible.  No chemical products are available for foliar nematode control in home gardens.  Hot water treatments have been developed to treat high-value plants but are not recommended for home gardeners.  Exact temperatures/timings for these treatments vary depending on the type of plant being treated, and missteps in timing/temperature can either kill plants or can lead to less than 100% control of the nematodes.  If you have plants infected with foliar nematodes, the best course of action is to dig them up, bag them and remove them from your garden as soon as you notice symptoms to reduce the risk of the nematodes spreading to healthy plants.  After working with infected plants, wash your hands with soap and water and decontaminate anything that has come into contact with the plants (e.g., tools, pots, bench surfaces, etc.) for 30 seconds with either 70% alcohol (e.g., rubbing alcohol, certain spray disinfectants) or 10% bleach.  If you use bleach, be sure to thoroughly rinse and oil metal tools to prevent rusting.  Because soil is virtually impossible to decontaminate, avoid planting susceptible hosts in an area where foliar nematodes have been a problem.

How do I avoid foliar nematode problems in the future? 

The easiest way to avoid problems with foliar nematodes is to not bring them into your garden.  Carefully inspect plants for nematode symptoms before purchase, but keep in mind that plants may not show symptoms early in the growing season.  Avoid using overhead sprinklers, as watering in this manner can splash foliar nematodes from plant to plant and promote spread.  Instead use a soaker or drip hose that applies water directly to the soil, rather than onto leaves.  Space plants far enough apart so that potential spread via water splash during natural rains is minimized, and avoid working with plants when they are wet.  DO NOT use foliar nematode-infected plants or even healthy-looking plants suspected to be infested with foliar nematodes when taking cuttings to propagate plants.

For more information on foliar nematodes: 

Contact the University of Wisconsin Plant Disease Diagnostics Clinic (PDDC) at (608) 262-2863 or pddc@wisc.edu.


This Fact Sheet is also available in PDF format:

*Completed as partial fulfillment of the requirements for a BS in Plant Pathology at the University of Wisconsin Madison.

© 2014-2024 the Board of Regents of the University of Wisconsin System doing business as University of Wisconsin-Madison Division of Extension.

An EEO/Affirmative Action employer, University of Wisconsin-Madison Division of Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

References to pesticide products in this publication are for your convenience and are not an endorsement or criticism of one product over similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.

Thanks to Bryan Jensen, Anette Phibbs and Ken Williams for reviewing this document.

A complete inventory of UW Plant Disease Facts is available at the University of Wisconsin-Madison Plant Disease Diagnostics Clinic website: https://pddc.wisc.edu.

Submit additional lawn, landscape, and gardening questions at https://hort.extension.wisc.edu/ask-a-gardening-question/.

Fire Blight

Extension Logo

UW Plant Disease Facts

 

Authors:   Ann Joy and Brian Hudelson, UW-Madison Plant Pathology
Last Revised:   03/01/2024
D-number:   D0052

What is fire blight? 

Fire blight is the most destructive bacterial disease affecting plants in the rose family, including apple, pear, crabapple, hawthorn, cotoneaster, mountain ash, quince, rose, firethorn (Pyracantha), and spirea.  It can disfigure or kill a tree or shrub, depending on the susceptibility of the host and weather conditions.

A shepherd’s crook at the end of an apple branch caused by fire blight.
A shepherd’s crook at the end of an apple branch caused by fire blight.

What does fire blight look like? 

Blossoms, leaves, twigs, and branches of plants affected by fire blight can turn dark brown to black, giving them the appearance of having been scorched in a fire.  Blighted blossoms and leaves tend to stay on the tree instead of falling.  The current year’s twigs often wilt and bend approximately 180°, forming a “shepherd’s crook.”  Cankers (sunken, discolored areas) form on branches and stems, and emit a sticky bacterial ooze.  Sapwood under the bark around cankers can become reddish brown in color.  Fruits can develop brown, sunken or shriveled areas that can be sticky.

Where does fire blight come from? 

Fire blight is caused by the bacterium Erwinia amylovora, which overwinters on the margins of branch cankers and starts to multiply when temperatures rise in the spring.  A bacterium-laden ooze seeps from cankers, and splashing rain and insects disperse this material.  In particular, pollinators such as honeybees can feed on the ooze and then transport the fire blight bacterium to flowers as they collect pollen.  The fire blight bacterium multiplies in blossoms and eventually can spread to other plant parts where it penetrates through wounds and natural openings.  Once the bacterium enters a plant, it can spread rapidly through the plant’s water-conducting (vascular) system.

How do I save a plant with fire blight? 

There is no cure for fire blight, but its spread can be limited by pruning out diseased branches.  Because the fire blight bacterium can spread rapidly, prune as soon as possible after symptoms become visible.  Prune when branches are dry and when your local weather service predicts several days of dry weather.  When removing diseased branches, prune at least 12 inches below tissue showing visible symptoms.  Always disinfect pruning tools after each cut by treating them for at least 30 seconds with bleach [diluted to a final concentration of approximately 0.5% sodium hypochlorite (the active ingredient)] or (preferably) 70% alcohol (e.g., rubbing alcohol, certain spray disinfectants).  If you use bleach, be sure to thoroughly rinse and oil your tools after pruning to prevent rusting.  Burn or bury pruned branches.

How do I avoid problems with fire blight in the future? 

By far the most effective strategy is to choose plants with fire blight resistance.  Also, select a well-drained site with a soil pH of 5.5 to 6.5.  Avoid applying high levels of nitrogen fertilizer, as this may stimulate new, succulent growth that is more prone to damage and thus infection.  Consider treating with Bordeaux mixture (copper sulfate + lime) before buds open to reduce the level of the fire blight bacterium present on branches.  Make one or two applications, with four days between applications.

For more information on fire blight: 

Contact the University of Wisconsin Plant Disease Diagnostics Clinic (PDDC) at (608) 262-2863 or pddc@wisc.edu.


This Fact Sheet is also available in PDF format:

© 2002-2024 the Board of Regents of the University of Wisconsin System doing business as University of Wisconsin-Madison Division of Extension.

An EEO/Affirmative Action employer, University of Wisconsin-Madison Division of Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

Thanks to Teryl Roper, Patricia McManus, and Patti Nagai for reviewing this document.

A complete inventory of UW Plant Disease Facts is available at the University of Wisconsin-Madison Plant Disease Diagnostics Clinic website: https://pddc.wisc.edu.

Submit additional lawn, landscape, and gardening questions at https://hort.extension.wisc.edu/ask-a-gardening-question/.

Downy Mildew

Extension Logo

UW Plant Disease Facts

 

Authors:   Jim Olis* and Brian Hudelson, UW-Madison Plant Pathology
Last Revised:   02/29/2024
D-number:   D0044

What is downy mildew? 

The downy mildews are a group of diseases that cause destruction of the leaves, stems, flowers and fruits of many plant species worldwide.  In Wisconsin, downy mildews have traditionally been problems on grapes, cucumbers (see UW Bulletin A3978, Cucurbit Downy Mildew:  Identification and Management, available at https://learningstore.extension.wisc.edu/), roses and Viburnum.  Downy mildews on basil (see UW Plant Disease Facts D15, Basil Downy Mildew) and impatiens (see UW Plant Disease Facts D66, Impatiens Downy Mildew) have more recently become problematic.

Downy Mildew
Downy Mildew

What does downy mildew look like? 

Downy mildew symptoms begin as small, green or yellow, translucent spots that can eventually spread to an entire leaf, stem, flower or fruit.  Infected plant parts may eventually brown or bronze.  The causal organism appears on infected stems, flowers and fruits, and on undersurfaces of infected leaves, as a downy, white, gray or purple fuzz.

Where does downy mildew come from? 

Downy mildew is caused by several closely related fungus-like water molds (e.g., Peronospora spp., Plasmopara spp. and Pseudoperonospora spp.) that survive in plant debris or on infected plants.  Downy mildew organisms are fairly host specific.  The downy mildew organism that infects one type of plant (e.g., rose) is not the same downy mildew organism that infects another (e.g., grape).  However, if you see downy mildew on one plant, then environmental conditions (i.e., cool, wet weather) are favorable for development of downy mildews on a wide range of plants.

How do I save a plant with downy mildew? 

Downy mildews can be controlled using fungicides, if treatments are applied early enough in disease development.  Fungicides containing chlorothalonil and copper (particularly Bordeaux mix, a combination of copper sulfate and lime) are labeled for downy mildew control in home gardens.  Timing and number of applications will vary depending on exactly the type of downy mildew you are attempting to control.  Be sure to read and follow all label instructions of the fungicide that you select to ensure that you use the product in the safest and most effective manner possible.

How do I avoid problems with downy mildew in the future? 

Consider buying downy mildew resistant varieties, when available.  In new plantings, space plants far apart.  In established plantings, prune or thin plants to increase airflow.  Proper spacing and thinning will reduce humidity and promote rapid drying of foliage, which is less favorable for downy mildew development.  Avoid overhead watering and apply water directly to the soil at the base of your plants.  At the end of the growing season, remove and destroy infected plant debris as this can serve as a source of spores for the next growing season.

For more information on downy mildew: 

Contact the University of Wisconsin Plant Disease Diagnostics Clinic (PDDC) at (608) 262-2863 or pddc@wisc.edu.


This Fact Sheet is also available in PDF format:

*Completed as partial fulfillment of the requirements for a BS in Plant Pathology at the University of Wisconsin Madison.

© 2001-2024 the Board of Regents of the University of Wisconsin System doing business as University of Wisconsin-Madison Division of Extension.

An EEO/Affirmative Action employer, University of Wisconsin-Madison Division of Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

References to pesticide products in this publication are for your convenience and are not an endorsement or criticism of one product over similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.

Thanks to Lisa Johnson, Ann Joy and Kristin Kleeberger for reviewing this document.

A complete inventory of UW Plant Disease Facts is available at the University of Wisconsin-Madison Plant Disease Diagnostics Clinic website: https://pddc.wisc.edu.

Submit additional lawn, landscape, and gardening questions at https://hort.extension.wisc.edu/ask-a-gardening-question/.

Dodder

Extension Logo

UW Plant Disease Facts

 

Authors:   Jennifer Clifford, Amilcar Sanchez, Trenton Stanger, and Brian Hudelson UW-Madison Plant Pathology
Last Revised:   02/29/2024
D-number:   D0129
Spaghetti-like dodder plants parasitizing carrots.
Spaghetti-like dodder plants parasitizing carrots.

What is dodder? 

Dodder is the name of several species of parasitic plants that are widely distributed in North America and Europe.  Plants parasitized by dodder include alfalfa, carrots, onions, potatoes, cranberries, a variety of herbaceous and woody ornamentals, and many weed species.  Parasitized plants become weakened, have reduced yields (in the case of agronomic crops), and can potentially die.

What does dodder look like? 

Dodders lack roots and leaves, and also lack chlorophyll, the green pigment found in most plants.  Dodders have slender, yellow-orange stems that cover infected plants in a spreading, tangled, spaghetti-like mass.  From May through July, dodders produce white, pink, or yellowish flowers.

Where does dodder come from? 

Dodders produce large numbers of seeds that germinate in the spring to produce shoots that attach to suitable host plants.  Dodders penetrate host tissue, and absorb nutrients via specialized structures called haustoria.  Once established on a host, the bottom of a dodder plant dies (thereby severing its connection with the soil), and the dodder plant becomes dependent on the host plant for water and nutrients.

How do I save plants parasitized by dodder? 

On woody ornamentals, simply prune out dodder-parasitized branches.  When small patches of dodder occur among herbaceous plants, apply contact herbicides such as 2,4-D early in the season, preferably before dodder seedlings have parasitized host plants.  Keep in mind that use of contact herbicides will likely also kill host plants.  Alternatively, cut or burn dodder and parasitized plants to keep dodder from spreading, and to prevent seed production.  For widespread dodder infestations, a combination of frequent tilling, burning and herbicide applications may be needed to achieve control.  Be sure to read and follow all label instructions of the herbicide that you select to ensure that you use the product in the safest and most effective manner possible.

How do I avoid problems with dodder in the future?  

Dodder’s wide host range and ability to survive as dormant seeds in soil make eradication difficult.  Preventing introduction of dodder is the best method of control.  Use dodder-free seed, and be sure to clean equipment thoroughly after working in a dodder-infested area.  Try to restrict animal movement between infested and non-infested areas as well.  Depending upon the specific crop or location, use of pre-emergent herbicides containing DCPA, dichlobenil, propyzamide, or trifluralin may be possible to prevent germination of dodder seeds.  Destroy actively growing dodder and any parasitized plants before the dodder produces seeds.  In agricultural settings where dodder has been a problem, rotate away from susceptible crops and grow non-host crops (e.g., corn, soybeans, or small grain cereals).  In conjunction with rotation, adequate control of weed hosts is critical to achieve control.

For more information on dodder: 

Contact the University of Wisconsin Plant Disease Diagnostics Clinic (PDDC) at (608) 262-2863 or pddc@wisc.edu.


This Fact Sheet is also available in PDF format:

© 2006-2024 the Board of Regents of the University of Wisconsin System doing business as University of Wisconsin-Madison Division of Extension.

An EEO/Affirmative Action employer, University of Wisconsin-Madison Division of Extension provides equal opportunities in employment and programming, including Title IX and ADA requirements. This document can be provided in an alternative format by calling Brian Hudelson at (608) 262-2863 (711 for Wisconsin Relay).

References to pesticide products in this publication are for your convenience and are not an endorsement or criticism of one product over similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.

Thanks to Lis Friemoth, Matt Lippert and Dan O’Neil for reviewing this document.

A complete inventory of UW Plant Disease Facts is available at the University of Wisconsin-Madison Plant Disease Diagnostics Clinic website: https://pddc.wisc.edu.

Submit additional lawn, landscape, and gardening questions at https://hort.extension.wisc.edu/ask-a-gardening-question/.