Invasive Plant Pathogens

Dutch Elm Disease

- **Causes**
 - *Ophiostoma ulmi*, *Ophiostoma novo-ulmi* (*Ceratocystis ulmi*)
 - *Pesotum ulmi* (*Graphium ulmi*)
 - *Sporothrix* stage
 - Yeast stage

- **Hosts**
 - Highly susceptible elms
 - American, Belgian, English, red, rock, September, European white, winged
 - Elms of intermediate susceptibility
 - Cedar, European field (smooth-leaf), wych (Scots)

- **Favorable environment**
 - Cool, wet weather (for infection)
 - Hot, dry weather (for symptom expression)

- **Transmission**
 - Elm bark beetles
 - *Scolytus multistriatus* (European)
 - *Hylurgopinus rufipes* (Native)
 - Root grafts
 - Major method of movement in clumps of elms
 - *Ophiostoma ulmi* can reach the roots during the first season of infection
Invasive Plant Pathogens

Dutch Elm Disease

- **Control**
 - Remove diseased elms
 - Disrupt root grafts
 - Mechanically (vibratory plow or trenching machine)
 - Chemically (soil fumigant)
 - Physical barriers
 - Be careful using elm wood
 - Remove bark
 - Cover wood

- **Mechanically**
- **Chemically**
- **Physical barriers**

- **Remove bark**
- **Cover wood**

Invasive Plant Pathogens

Dutch Elm Disease

- **Control**
 - Plant resistant elms
 - Crosses between American and other elms
 - True American elms
 - ‘American Liberty’
 - ‘Independence’
 - ‘Princeton’
 - ‘Valley Forge’
 - ‘New Harmony’

- **Crosses between American and other elms**
- **True American elms**
 - ‘American Liberty’
 - ‘Independence’
 - ‘Princeton’
 - ‘Valley Forge’
 - ‘New Harmony’

- **Disinfest pruning tools after routine pruning**
 - 70% alcohol
 - 10% bleach
 - Commercial disinfectants
 - Use fungicides injections
 - Propiconazole, thiabendazole
 - Prophylactic or therapeutic
 - Every 12-24 months

Invasive Plant Pathogens

Dutch Elm Disease

- **Cause**
 - *Ceratocystis fagacearum* (*Chalara quercina*)
- **Hosts**
 - About 20 species of oak (both “red” and “white”)
 - Chinese chestnut
- **Favorable environment**
 - Cool, wet weather (for infection)
 - Hot, dry weather (for symptom expression)
Transmission – Insects
• Oak bark beetles
 – *Pseudopityophthorus ninutissimus*
 – *Pseudopityophthorus pruinatus*
• Sap beetles
 – *Carpophilus* spp.
 – *Colopterus* spp.
 – *Cryptarcha* spp.
 – *Epuraea* spp.
 – *Clischochilus* spp.

Transmission – Root grafts
• Major method of movement in oak forests
• Often form between trees in the same subgenus
 – Black/red oak group
 – White oak group
• Movement of up to 20-25 ft/year

Control
– DO NOT prune or wound oaks from bud break to 2-3 weeks past full leaf development
– Disrupt root grafts
 • Mechanically (vibratory plow or trenching machine)
 • Chemically (soil fumigant)
 • Physical barriers
– Remove diseased (and healthy) trees

Control
– Be careful using oak wood
 • Remove bark
 • Cover wood
– Use fungicide injections
 • Propiconazole
 • Prophylactic or therapeutic
– Every 12-24 months
Invasive Plant Pathogens
Chestnut Blight

- **Cause**
 - *Cryphonectria parasitica* (*Endothia parasitica*)
- **Hosts**
 - American chestnut
 - Other chestnut species (NOT horsechestnut)
 - Some oak species
- **Favorable environment**
 - Cool, wet weather

Invasive Plant Pathogens
Chestnut Blight

- **Control**
 - Grow American chestnut individually and isolated from all other chestnuts
 - Reduce wounding (mechanical and insect)
 - Prune out infected branches and trunks
 - Disinfect pruning tools after routine pruning
 - 70% alcohol
 - 10% bleach
 - Commercial disinfectants

Invasive Plant Pathogens
Ramorum Blight/Sudden Oak Death

- **Cause**: *Phytophthora ramorum*
- **Hosts**
 - Coast live oak, California black oak, Shreve oak, tanoak, big leaf maple, rhododendron, huckleberry, California bay laurel, madrone, manzanita, huckleberry, California honeysuckle, toyon, California buckeye, California coffeeberry, arrowwood, *Viburnum* spp., and many others
 - Northern red oak, northern pin oak (by inoculation)
 - Host list continues to expand
Control
– Buy woody ornamentals from a reputable source
– Inspect plants prior to purchase for symptoms of sudden oak death
– Keep new plants isolated from established plants

Invasive Plant Pathogens
Ramorum Blight/Sudden Oak Death

Invasive Plant Pathogens
Ramorum Blight (Sudden Oak Death)

Invasive Plant Pathogens
Ralstonia Wilt/Brown Rot

Invasive Plant Pathogens
Ralstonia Wilt/Brown Rot

Control
– Remove and destroy infected plants (with the help of WIDATCP and USDA APHIS)
– Contact the PDDC if you believe you have found this disease!

Cause: Ralstonia solanacearum
– Races (3)/biovars (2)
– Phylotypes (II)/sequevars (1,2)

Hosts
– Potato
– Geranium
– Some additional solanaceous plants
– Limited additional hosts

Control
– Start with clean propagation materials
– Follow strict sanitation procedures when working with plant materials
 • Keep plants from different sources separated
 • Disinfect pruning tools
 • Disinfect hands when working with plants
– Test suspect plants with dipstick tests
Invasive Plant Pathogens

Ralstonia Wilt/Brown Rot

- **Control**
 - If you suspect you have the disease, contact the PDDC or the WIDATCP
 - Remove symptomatic plants
 - Remove co-mingled plants
 - Remove contaminated plant debris
 - Disinfect greenhouses after production

Soybean Rust

- **Causes**
 - Phakopsora pachyrhizi
 - Phakopsora meibomiae

- **Hosts**
 - Soybean
 - Other economically important legumes
 - Legume weeds (e.g., kudzu)

- **Favorable Environment:** Warm, wet weather

Soybean Cyst Nematode

- **Cause:** Heterodera glycines
- **Host:** Soybean
- **Favorable Environment:** None
Invasive Plant Pathogens

Soybean Cyst Nematode

- **Control**
 - Prevent soil movement
 - Decontaminate equipment
 - Rotate to a non-host
 - Plant resistant/tolerant varieties

Invasive Plant Pathogens

Tar Spot

- **Causes**
 - *Rhytisma americanum*
 - *Rhytisma acerinum*

- **Hosts:** Maples

- **Favorable Environment:** Cool, wet weather

Tar Spot

- **Cause:** *Sawadaea tulasnei*

- **Host:** Norway maple

- **Environmental trigger:** High humidity

Invasive Plant Pathogens

Sawadaea Powdery Mildew

- **Control**
 - **DO NOT panic**
 - Remove diseased leaves
 - Burn
 - Bury
 - Hot compost
 - Use fungicides to prevent infections
 - Copper-containing fungicides
 - At bud break, 1/2 and full leaf expansion
Invasive Plant Pathogens
Sawadaea Powdery Mildew

• Control:
 – DO NOT panic
 – Remove diseased leaf debris
 – Reduce humidity
 • Plant trees less densely
 • Thin branches
 – Produce and use trees other than Norway maple

• Control
 – Use fungicides to prevent infections (?)
 • Dinocap, dithiocarbamates, myclobutanil,
 triadimefon, triforine, sulfur or thiophanate-methyl
 • Baking soda (1.5 Tbsp/gal) and light weight
 horticultural oil (3 Tbsp/gal)
 • Apply when humidity >60-70%
 • Alternate active ingredients with different FRAC codes
 • Apply every 7-14 days

Invasive Plant Pathogens
Where to Go for Help

Plant Disease Diagnostics Clinic
Department of Plant Pathology
University of Wisconsin-Madison
1630 Linden Drive
Madison, WI 53706-1598
(608) 262-2863
pddc@plantpath.wisc.edu
http://pddc.wisc.edu
Follow on Twitter @UWPDDC